Short-term dietary restriction maintains synaptic plasticity whereas short-term overfeeding alters cellular dynamics in the aged brain: evidence from the zebrafish model organism

buir.contributor.authorKaroğlu-Eravşar, Elif Tuğçe
buir.contributor.authorTüz Şaşik, Melek Umay
buir.contributor.authorAdams, Michelle
buir.contributor.orcidKaroğlu-Eravşar, Elif Tuğçe|0000-0001-5110-3956
dc.citation.epage182en_US
dc.citation.spage169en_US
dc.citation.volumeNumber106en_US
dc.contributor.authorKaroğlu-Eravşar, Elif Tuğçe
dc.contributor.authorTüz Şaşik, Melek Umay
dc.contributor.authorAdams, Michelle
dc.date.accessioned2022-02-23T08:39:32Z
dc.date.available2022-02-23T08:39:32Z
dc.date.issued2021-06-19
dc.departmentAysel Sabuncu Brain Research Center (BAM)en_US
dc.departmentDepartment of Molecular Biology and Geneticsen_US
dc.departmentDepartment of Psychologyen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractIncreased caloric intake (OF) impairs quality of life causing comorbidities with other diseases and cognitive deficits, whereas dietary restriction (DR) increases healthspan by preventing age-related deteriorations. To understand the effects of these opposing dietary regimens on the cellular and synaptic dynamics during brain aging, the zebrafish model, which shows gradual aging like mammals, was utilized. Global changes in cellular and synaptic markers with respect to age and a 12 week dietary regimen of OF and DR demonstrated that aging reduces the levels of the glutamate receptor subunits, GLUR2/3, inhibitory synaptic clustering protein, GEP, synaptic vesicle protein, SYP, and early-differentiated neuronal marker, HuC. DR significantly elevates levels of glutamate receptor subunits, GLUR2/3, and NMDA clustering protein, PSD95, levels, while OF subtly increases the level of the neuronal protein, DCAMKL1. These data suggest that decreased caloric intake within the context of aging has more robust effects on synapses than cellular proteins, whereas OF alters cellular dynamics. Thus, patterns like these should be taken into account for possible translation to human subjects.en_US
dc.description.provenanceSubmitted by Esma Aytürk (esma.babayigit@bilkent.edu.tr) on 2022-02-23T08:39:32Z No. of bitstreams: 1 Short-term_dietary_restriction_maintains_synaptic_plasticity_whereas_short-term_overfeeding_alters_cellular_dynamics_in_the_aged_brain_evidence_from_the_zebrafish_model_organism.pdf: 2402435 bytes, checksum: 05ea3e09c2f93f20333c7fcd1b6b0391 (MD5)en
dc.description.provenanceMade available in DSpace on 2022-02-23T08:39:32Z (GMT). No. of bitstreams: 1 Short-term_dietary_restriction_maintains_synaptic_plasticity_whereas_short-term_overfeeding_alters_cellular_dynamics_in_the_aged_brain_evidence_from_the_zebrafish_model_organism.pdf: 2402435 bytes, checksum: 05ea3e09c2f93f20333c7fcd1b6b0391 (MD5) Previous issue date: 2021-06-19en
dc.embargo.release2022-06-19
dc.identifier.doi10.1016/j.neurobiolaging.2021.06.010en_US
dc.identifier.eissn1558-1497
dc.identifier.issn0197-4580
dc.identifier.urihttp://hdl.handle.net/11693/77566
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://doi.org/10.1016/j.neurobiolaging.2021.06.010en_US
dc.source.titleNeurobiology of Agingen_US
dc.subjectZebrafishen_US
dc.subjectAgingen_US
dc.subjectOverfeedingen_US
dc.subjectDietary restrictionen_US
dc.subjectSynapsesen_US
dc.titleShort-term dietary restriction maintains synaptic plasticity whereas short-term overfeeding alters cellular dynamics in the aged brain: evidence from the zebrafish model organismen_US
dc.typeArticleen_US

Files