Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayer stacks

buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage8en_US
dc.citation.issueNumber14872en_US
dc.citation.spage1en_US
dc.citation.volumeNumber7en_US
dc.contributor.authorDereshgi, S. A.en_US
dc.contributor.authorGhobadi, A.en_US
dc.contributor.authorHajian, H.en_US
dc.contributor.authorButun, B.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.date.accessioned2018-04-12T11:07:37Z
dc.date.available2018-04-12T11:07:37Z
dc.date.issued2017en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentDepartment of Physicsen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractWe report ultra-broadband perfect absorbers for visible and near-infrared applications that are based on multilayers of metal-insulator (MI) stacks fabricated employing straightforward layer deposition techniques and are, therefore, lithography-free and large-scale compatible. We scrutinize the impact of different physical parameters of an MIMI absorber structure with analysis of each contributing metal layer. After obtaining the optimal design parameters (i.e. material selection and their thicknesses) with both simulation and numerical analysis (Transfer Matrix Method) methods, an experimental sample is fabricated and characterized. Our fabricated MIMI absorber consists of an optically thick tungsten (W) back reflector layer followed by 80 nm aluminum oxide (Al2O3), 10 nm titanium (Ti), and finally another 80 nm Al2O3. The experimental results demonstrate over 90 percent absorption between 400 nm and 1640 nm wavelengths that is optimized for ultra-broadband absorption in MIMI structures. Moreover, the impedance matching method with free-space is used to shed light on the metallic layer selection process. © 2017 The Author(s).en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:07:37Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1038/s41598-017-13837-8en_US
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/11693/37260
dc.language.isoEnglishen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41598-017-13837-8en_US
dc.source.titleScientific Reportsen_US
dc.titleUltra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayer stacksen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ultra-Broadband, Lithography-Free, and Large-Scale Compatible Perfect Absorbers The Optimum Choice of Metal layers in Metal-Insulator Multilayer Stacks.pdf
Size:
3.31 MB
Format:
Adobe Portable Document Format
Description:
Full printable version