Reproducing kernels of harmonic Besov spaces on the ball
dc.citation.epage | 738 | en_US |
dc.citation.issueNumber | 13-14 | en_US |
dc.citation.spage | 735 | en_US |
dc.citation.volumeNumber | 347 | en_US |
dc.contributor.author | Gergun, S. | en_US |
dc.contributor.author | Kaptanoglu, H. T. | en_US |
dc.contributor.author | Ureyen, A. E. | en_US |
dc.date.accessioned | 2015-07-28T11:58:41Z | |
dc.date.available | 2015-07-28T11:58:41Z | |
dc.date.issued | 2009-07 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | Besov spaces of harmonic functions on the unit ball of Rn are defined by requiring sufficiently high-order derivatives of functions lie in harmonic Bergman spaces. We compute the reproducing kernels of those Besov spaces that are Hilbert spaces. The kernels turn out to be weighted infinite sums of zonal harmonics and natural radial fractional derivatives of the Poisson kernel. To cite this article: S. Gergün et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences. | en_US |
dc.identifier.doi | 10.1016/j.crma.2009.04.016 | en_US |
dc.identifier.issn | 1631-073X | |
dc.identifier.uri | http://hdl.handle.net/11693/11761 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.crma.2009.04.016 | en_US |
dc.source.title | Comptes Rendus Mathématique | en_US |
dc.subject | Besov | en_US |
dc.subject | Dirichlet | en_US |
dc.subject | Drury-arveson | en_US |
dc.subject | Hardy | en_US |
dc.subject | Bergman space | en_US |
dc.subject | Reproducing Kernel Hilbert space | en_US |
dc.subject | Radial differential operator | en_US |
dc.subject | Spherical harmonic | en_US |
dc.title | Reproducing kernels of harmonic Besov spaces on the ball | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Reproducing_kernels_of_harmonic_Besov_spaces_on_the_ball.pdf
- Size:
- 129.79 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version