Reproducing kernels of harmonic Besov spaces on the ball

dc.citation.epage738en_US
dc.citation.issueNumber13-14en_US
dc.citation.spage735en_US
dc.citation.volumeNumber347en_US
dc.contributor.authorGergun, S.en_US
dc.contributor.authorKaptanoglu, H. T.en_US
dc.contributor.authorUreyen, A. E.en_US
dc.date.accessioned2015-07-28T11:58:41Z
dc.date.available2015-07-28T11:58:41Z
dc.date.issued2009-07en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractBesov spaces of harmonic functions on the unit ball of Rn are defined by requiring sufficiently high-order derivatives of functions lie in harmonic Bergman spaces. We compute the reproducing kernels of those Besov spaces that are Hilbert spaces. The kernels turn out to be weighted infinite sums of zonal harmonics and natural radial fractional derivatives of the Poisson kernel. To cite this article: S. Gergün et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences.en_US
dc.identifier.doi10.1016/j.crma.2009.04.016en_US
dc.identifier.issn1631-073X
dc.identifier.urihttp://hdl.handle.net/11693/11761
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.crma.2009.04.016en_US
dc.source.titleComptes Rendus Mathématiqueen_US
dc.subjectBesoven_US
dc.subjectDirichleten_US
dc.subjectDrury-arvesonen_US
dc.subjectHardyen_US
dc.subjectBergman spaceen_US
dc.subjectReproducing Kernel Hilbert spaceen_US
dc.subjectRadial differential operatoren_US
dc.subjectSpherical harmonicen_US
dc.titleReproducing kernels of harmonic Besov spaces on the ballen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Reproducing_kernels_of_harmonic_Besov_spaces_on_the_ball.pdf
Size:
129.79 KB
Format:
Adobe Portable Document Format
Description:
Full printable version