Reproducing kernels of harmonic Besov spaces on the ball
Date
2009-07
Authors
Gergun, S.
Kaptanoglu, H. T.
Ureyen, A. E.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Comptes Rendus Mathématique
Print ISSN
1631-073X
Electronic ISSN
Publisher
Elsevier
Volume
347
Issue
13-14
Pages
735 - 738
Language
English
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
4
views
views
11
downloads
downloads
Series
Abstract
Besov spaces of harmonic functions on the unit ball of Rn are defined by requiring sufficiently high-order derivatives of functions lie in harmonic Bergman spaces. We compute the reproducing kernels of those Besov spaces that are Hilbert spaces. The kernels turn out to be weighted infinite sums of zonal harmonics and natural radial fractional derivatives of the Poisson kernel. To cite this article: S. Gergün et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences.