Reproducing kernels of harmonic Besov spaces on the ball

Date

2009-07

Authors

Gergun, S.
Kaptanoglu, H. T.
Ureyen, A. E.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
4
views
11
downloads

Citation Stats

Series

Abstract

Besov spaces of harmonic functions on the unit ball of Rn are defined by requiring sufficiently high-order derivatives of functions lie in harmonic Bergman spaces. We compute the reproducing kernels of those Besov spaces that are Hilbert spaces. The kernels turn out to be weighted infinite sums of zonal harmonics and natural radial fractional derivatives of the Poisson kernel. To cite this article: S. Gergün et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences.

Source Title

Comptes Rendus Mathématique

Publisher

Elsevier

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English