Reproducing kernels of harmonic Besov spaces on the ball
Date
2009-07
Authors
Gergun, S.
Kaptanoglu, H. T.
Ureyen, A. E.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
4
views
views
11
downloads
downloads
Citation Stats
Series
Abstract
Besov spaces of harmonic functions on the unit ball of Rn are defined by requiring sufficiently high-order derivatives of functions lie in harmonic Bergman spaces. We compute the reproducing kernels of those Besov spaces that are Hilbert spaces. The kernels turn out to be weighted infinite sums of zonal harmonics and natural radial fractional derivatives of the Poisson kernel. To cite this article: S. Gergün et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009). © 2009 Académie des sciences.
Source Title
Comptes Rendus Mathématique
Publisher
Elsevier
Course
Other identifiers
Book Title
Degree Discipline
Degree Level
Degree Name
Citation
Permalink
Published Version (Please cite this version)
Collections
Language
English