Multi-stage stochastic programming for demand response optimization
buir.advisor | Paternotte, Hande Yaman | |
dc.contributor.author | Şahin, Munise Kübra | |
dc.date.accessioned | 2018-08-08T13:30:15Z | |
dc.date.available | 2018-08-08T13:30:15Z | |
dc.date.copyright | 2018-07 | |
dc.date.issued | 2018-07 | |
dc.date.submitted | 2018-08-06 | |
dc.description | Cataloged from PDF version of article. | en_US |
dc.description | Thesis (M.S.): Bilkent University, Department of Industrial Engineering, İhsan Doğramacı Bilkent University, 2018. | en_US |
dc.description | Includes bibliographical references (leaves 44-47). | en_US |
dc.description.abstract | The increase in the energy consumption puts pressure on natural resources and environment and results in a rise in the price of energy. This motivates residents to schedule their energy consumption through demand response mechanism. We propose a multi-stage stochastic programming model to schedule di erent kinds of electrical appliances under uncertain weather conditions and availability of renewable energy. We incorporate appliances with internal batteries to better utilize the renewable energy sources. Our aim is to minimize the electricity cost and the residents' dissatisfaction. We use a scenario groupwise decomposition approach to compute lower and upper bounds for instances with a large number of scenarios. The results of our computational experiments show that the approach is very e ective in nding high quality solutions in small computation times. We provide insights about how optimization and renewable energy combined with batteries for storage result in peak demand reduction, savings in electricity cost and more pleasant schedules for residents with di erent levels of price sensitivity. | en_US |
dc.description.provenance | Submitted by Betül Özen (ozen@bilkent.edu.tr) on 2018-08-08T13:30:15Z No. of bitstreams: 1 Multi-stage Stochastic Programming for Demand Reponse Optimization.pdf: 573590 bytes, checksum: cfbc0450b76d339187fb779cf1070c1a (MD5) | en |
dc.description.provenance | Made available in DSpace on 2018-08-08T13:30:15Z (GMT). No. of bitstreams: 1 Multi-stage Stochastic Programming for Demand Reponse Optimization.pdf: 573590 bytes, checksum: cfbc0450b76d339187fb779cf1070c1a (MD5) Previous issue date: 2018-08 | en |
dc.description.statementofresponsibility | by Munise Kübra Şahin. | en_US |
dc.embargo.release | 2019-08-06 | |
dc.format.extent | xii, 51 leaves : illustrations ; 30 cm | en_US |
dc.identifier.itemid | B158761 | |
dc.identifier.uri | http://hdl.handle.net/11693/47729 | |
dc.language.iso | English | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Smart Grid | en_US |
dc.subject | Demand Response | en_US |
dc.subject | Multi-Stage Stochastic Programming | en_US |
dc.subject | Scenario Groupwise Decomposition | en_US |
dc.title | Multi-stage stochastic programming for demand response optimization | en_US |
dc.title.alternative | Talep tepkisi optimizasyonu için çok aşamalı rassal programlama | en_US |
dc.type | Thesis | en_US |
thesis.degree.discipline | Industrial Engineering | |
thesis.degree.grantor | Bilkent University | |
thesis.degree.level | Master's | |
thesis.degree.name | MS (Master of Science) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Multi-stage Stochastic Programming for Demand Reponse Optimization.pdf
- Size:
- 560.15 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: