Multi-stage stochastic programming for demand response optimization

Date
2018-07
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Type
Thesis
Journal Title
Journal ISSN
Volume Title
Abstract

The increase in the energy consumption puts pressure on natural resources and environment and results in a rise in the price of energy. This motivates residents to schedule their energy consumption through demand response mechanism. We propose a multi-stage stochastic programming model to schedule di erent kinds of electrical appliances under uncertain weather conditions and availability of renewable energy. We incorporate appliances with internal batteries to better utilize the renewable energy sources. Our aim is to minimize the electricity cost and the residents' dissatisfaction. We use a scenario groupwise decomposition approach to compute lower and upper bounds for instances with a large number of scenarios. The results of our computational experiments show that the approach is very e ective in nding high quality solutions in small computation times. We provide insights about how optimization and renewable energy combined with batteries for storage result in peak demand reduction, savings in electricity cost and more pleasant schedules for residents with di erent levels of price sensitivity.

Course
Other identifiers
Book Title
Keywords
Smart Grid, Demand Response, Multi-Stage Stochastic Programming, Scenario Groupwise Decomposition
Citation
Published Version (Please cite this version)