Computational implementation

buir.contributor.authorDalkıran, Nuh Aygün
buir.contributor.orcidDalkıran, Nuh Aygün|0000-0002-0586-0355
dc.citation.epage633en_US
dc.citation.issueNumber4en_US
dc.citation.spage605en_US
dc.citation.volumeNumber26en_US
dc.contributor.authorBarlo, M.
dc.contributor.authorDalkıran, Nuh Aygün
dc.date.accessioned2023-02-17T10:40:00Z
dc.date.available2023-02-17T10:40:00Z
dc.date.issued2022-12
dc.departmentDepartment of Economicsen_US
dc.description.abstractFollowing a theoretical analysis of the scope of Nash implementation for a given mechanism, we study the formal framework for computational identification of Nash implementability. We provide computational tools for Nash implementation in finite environments. In particular, we supply Python codes that identify (i) the domain of preferences that allows Nash implementation by a given mechanism, (ii) the maximal domain of preferences that a given mechanism Nash implements Pareto efficiency, (iii) all consistent collections of sets of a given social choice correspondence (SCC), the existence of which is a necessary condition for Nash implementation of this SCC, and (iv) check whether some of the well-known sufficient conditions for Nash implementation hold for a given SCC. Our results exhibit that the computational identification of all collections consistent with an SCC enables the planner to design appealing mechanisms. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.identifier.doi10.1007/s10058-021-00282-3en_US
dc.identifier.issn1434-4742
dc.identifier.urihttp://hdl.handle.net/11693/111498
dc.language.isoEnglishen_US
dc.publisherReview of Economic Designen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10058-021-00282-3en_US
dc.subjectBehavioral implementationen_US
dc.subjectComputationen_US
dc.subjectConsistent collectionsen_US
dc.subjectMaskin monotonicityen_US
dc.subjectMaximal domainen_US
dc.subjectNash implementationen_US
dc.titleComputational implementationen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Computational_implementation.pdf
Size:
492.97 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: