Voltage contrast X-ray photoelectron spectroscopy reveals graphene-substrate interaction in graphene devices fabricated on the C-and Si-faces of SiC
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
We report on an X-ray photoelectron spectroscopy (XPS) study of two graphene based devices that were analyzed by imposing a significant current under +3 V bias. The devices were fabricated as graphene layers(s) on hexagonal SiC substrates, either on the C- or Si-terminated faces. Position dependent potential distributions (IR-drop), as measured by variations in the binding energy of a C1s peak are observed to be sporadic for the C-face graphene sample, but very smooth for the Si-face one, although the latter is less conductive. We attribute these sporadic variations in the C-face device to the incomplete electrical decoupling between the graphene layer(s) with the underlying buffer and/or substrate layers. Variations in the Si2p and O1s peaks of the underlayer(s) shed further light into the electrical interaction between graphene and other layers. Since the potential variations are amplified only under applied bias (voltage-contrast), our methodology gives unique, chemically specific electrical information that is difficult to obtain by other techniques.