Genetically programmed engineered cells for biomaterials synthesis

Date

2021-01

Editor(s)

Advisor

Şeker, Urartu Özgür Şafak

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Bilkent University

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Several organisms can process nanomaterials and producing in various sizes and morphologies in mild conditions by utilizing specific proteins. In sea sponges, silicatein proteins play a key role in synthesizing silica nanoparticles the precursor silicic acid. Silaffin proteins in diatoms can also biomineralize silica. One subunit of silaffin called R5 peptide has a key role for nucleation and initiation of the nanoparticle formation and it has been shown that bacteria synthesized R5 peptide has ability to precipitate silica structures. These silica nanostructures can be utilized in many areas. Silica-based cements take attentions to make them useful in restorative dentistry and endodontics. In this work, a synthetic cell system has reprogrammed autotransporter (Ag43) system to display R5 peptide fused with fluorescent proteins. After displaying the fused proteins on the surface of bacteria or secreting them into environment, whole cell or the proteins are used to precipitate silica in the presence of precursor such as tetramethyl orthosilicate (TMOS). These silica structures are used to evaluate their in vitro effects on the proliferation of dental pulp stem cells (DPSCs) and their osteogenesis.

Course

Other identifiers

Book Title

Citation

item.page.isversionof