Light-induced paramagnetism in colloidal Ag+-doped CdSe nanoplatelets

Series

Abstract

We describe a study of the magneto-optical properties of Ag+-doped CdSe colloidal nanoplatelets (NPLs) that were grown using a novel doping technique. In this work, we used magnetic circularly polarized luminescence and magnetic circular dichroism spectroscopy to study light-induced magnetism for the first time in 2D solution-processed structures doped with nominally nonmagnetic Ag+ impurities. The excitonic circular polarization (PX) and the exciton Zeeman splitting (ΔEZ) were recorded as a function of the magnetic field (B) and temperature (T). Both ΔEZ and PX have a Brillouin-function-like dependence on B and T, verifying the presence of paramagnetism in Ag+-doped CdSe NPLs. The observed light-induced magnetism is attributed to the transformation of nonmagnetic Ag+ ions into Ag2+, which have a nonzero magnetic moment. This work points to the possibility of incorporating these nanoplatelets into spintronic devices, in which light can be used to control the spin injection.

Source Title

The Journal of Physical Chemistry Letters

Publisher

American Chemical Society

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English