A bean-like formation of germanium nanoparticles inside CNTs by the subsequent operation of colloidal synthesis and catalytic chemical vapor deposition methods

buir.contributor.authorKaratutlu, Ali
buir.contributor.authorOrtaç, Bülend
dc.citation.epage1800123-7en_US
dc.citation.issueNumber11en_US
dc.citation.spage1800123-2en_US
dc.citation.volumeNumber53en_US
dc.contributor.authorKaratutlu, Alien_US
dc.contributor.authorBoi, F. S.en_US
dc.contributor.authorWilson, R. M.en_US
dc.contributor.authorErsoy, O.en_US
dc.contributor.authorOrtac, Bülenden_US
dc.contributor.authorSapelkin, A.en_US
dc.date.accessioned2019-02-21T16:01:36Zen_US
dc.date.available2019-02-21T16:01:36Zen_US
dc.date.issued2018en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractThe first attempts of implanting Ge nanoparticles (Ge NPs) inside iron filled CNTs (IF-CNTs) by a subsequent use of the bench top colloidal synthesis and chemical vapor deposition (CVD) approach is shown. Ge NPs are colloidally synthesized (with a 3.8 ± 0.6 nm in size) before the deposition. The hybrid Ge NPs/IF-CNTs structure and morphology are characterized using high-resolution transmission electron microscopy, scanning electron microscopy, selective area electron diffraction, and X-ray diffraction studies. After the deposition, Ge NPs appear to be grown in size and to be sprinkled almost homogeneously into the IF-CNTs similar to a bean-like deposition. CNTs diameter is also identified to be enlarged drastically when using Ge NPs as a catalyst in CVD compared to the CNTs formation without Ge NPs. In addition, micro-length rectangular Ge µPs are also found outside the nanotube core. Rietveld analysis shows the presence of γ-Fe (Fm-3m), ferromagnetic α-Fe (Im-3m), Fe3C, Ge (Fd-3m), and multiwall CNTs. The results indicate that Ge NPs and IF-CNTs demonstrate cocatalytic activity in increasing the respective sizes, which are dramatically larger than those obtained by the conventional approaches.en_US
dc.description.sponsorshipThe authors acknowledge the support provided by Queen Mary, University of London. The authors also thank Dr. Selcuk Atalay for fruitful discussions on the CNTs growth mechanism (Maxwell Institute for Mathematical Sciences and School for Mathematical and Computer Sciences, Heriot-Watt University).en_US
dc.embargo.release2019-11-08en_US
dc.identifier.doi10.1002/crat.201800123en_US
dc.identifier.eissn1521-4079en_US
dc.identifier.issn0232-1300en_US
dc.identifier.urihttp://hdl.handle.net/11693/49884en_US
dc.language.isoEnglishen_US
dc.publisherWileyen_US
dc.relation.isversionofhttps://doi.org/10.1002/crat.201800123en_US
dc.relation.projectQueen Mary University of London, QMUL - African Institute for Mathematical Sciences, AIMSen_US
dc.source.titleCrystal Research and Technologyen_US
dc.subjectChemical vapor depositionen_US
dc.subjectCNTsen_US
dc.subjectColloidalen_US
dc.subjectFerromagnetismen_US
dc.subjectGermaniumen_US
dc.subjectNanoparticlesen_US
dc.titleA bean-like formation of germanium nanoparticles inside CNTs by the subsequent operation of colloidal synthesis and catalytic chemical vapor deposition methodsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_bean_like_formation_of_germanium_nanoparticles_inside_CNTs_by_the_subsequent_operation_of_colloidal synthesis_and_catalytic_chemical_vapor_deposition_methods.pdf
Size:
2.03 MB
Format:
Adobe Portable Document Format
Description: