Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
A large-area superhydrophobic and omnidirectional antireflective nanostructured organically modified silica coating has been designed and prepared. The coating mimics the self-cleaning property of superhydrophobic lotus leaves and omnidirectional broad band antireflectivity of moth compound eyes, simultaneously. Water contact and sliding angles of the coating are around 160 and 10, respectively. Coating improves the transmittance of the glass substrate around 4%, when coated on a single side of a glass, in visible and near-infrared region at normal incidence angles. At oblique incidence angles (up to 60) improvement in transmission reaches to around 8%. In addition, coatings are mechanically stable against impact of water droplets from considerable heights. We believe that our inexpensive and durable multifunctional coatings are suitable for stepping out of the laboratory to practical outdoor applications.