Beaming and enhanced transmission through a subwavelength aperture via epsilon-near-zero media

Date

2017

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Scientific Reports

Print ISSN

Electronic ISSN

2045-2322

Publisher

Nature Publishing Group

Volume

7

Issue

1
4741

Pages

1 - 8

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
2
views
7
downloads

Series

Abstract

We numerically validate and experimentally realize considerable funneling of electromagnetic energy through a subwavelength aperture that is covered with an epsilon-near-zero metamaterial (ENZ). The epsilon-near-zero metamaterial is composed of two layers of metasurfaces and operates at microwave frequencies. We demonstrate that the presence of the metamaterial at the inner and outer sides of the aperture not only lead to a significant enhancement in light transmission, but also cause a directional emission of light extracting from this hybrid system. In addition to these experimental results, we theoretically demonstrate the same concept in mid-IR region for a subwavelength gold aperture with indium tin oxide as an epsilon-near-zero material. Moreover, we found that using a dielectric spacer in-between the sunwavelength aperture and the ENZ medium, it is possible to red-shift the enhancement/directional frequency of the system.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)