Semantic argument frequency-based multi-document summarization

dc.citation.epage464en_US
dc.citation.spage460en_US
dc.contributor.authorAksoy, Cemen_US
dc.contributor.authorBuğdaycı, Ahmeten_US
dc.contributor.authorGür, Tunayen_US
dc.contributor.authorUysal, İbrahimen_US
dc.contributor.authorCan, Fazlıen_US
dc.date.accessioned2016-02-08T12:26:03Z
dc.date.available2016-02-08T12:26:03Z
dc.date.issued2009-09en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.descriptionDate of Conference: 14-16 Sept. 2009
dc.descriptionConference name: 24th International Symposium on Computer and Information Sciences, 2009
dc.description.abstractSemantic Role Labeling (SRL) aims to identify the constituents of a sentence, together with their roles with respect to the sentence predicates. In this paper, we introduce and assess the idea of using SRL on generic Multi-Document Summarization (MDS). We score sentences according to their inclusion of frequent semantic phrases and form the summary using the top-scored sentences. We compare this method with a term-based sentence scoring approach to investigate the effects of using semantic units instead of single words for sentence scoring. We also integrate our scoring metric as an auxiliary feature to a cutting edge summarizer with the intention of examining its effects on the performance. The experiments using datasets from the Document Understanding Conference (DUC) 2004 show that the SRL-based summarization outperforms the term-based approach as well as most of the DUC participants. © 2009 IEEE.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T12:26:03Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2009en
dc.identifier.doi10.1109/ISCIS.2009.5291878en_US
dc.identifier.urihttp://hdl.handle.net/11693/28644
dc.language.isoEnglishen_US
dc.publisherIEEE
dc.relation.isversionofhttp://dx.doi.org/10.1109/ISCIS.2009.5291878en_US
dc.source.title24th International Symposium on Computer and Information Sciences, ISCIS 2009en_US
dc.subjectFrequencyen_US
dc.subjectSemantic role labelingen_US
dc.subjectSummarizationen_US
dc.subjectCutting edgesen_US
dc.subjectData setsen_US
dc.subjectMulti-document summarizationen_US
dc.subjectSemantic unitsen_US
dc.subjectInformation scienceen_US
dc.subjectLabelingen_US
dc.subjectSemanticsen_US
dc.titleSemantic argument frequency-based multi-document summarizationen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Semantic argument frequency-based Multi-Document Summarization.pdf
Size:
375.21 KB
Format:
Adobe Portable Document Format
Description:
Full printable version