Semantic argument frequency-based multi-document summarization

Date

2009-09

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

24th International Symposium on Computer and Information Sciences, ISCIS 2009

Print ISSN

Electronic ISSN

Publisher

IEEE

Volume

Issue

Pages

460 - 464

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
28
downloads

Series

Abstract

Semantic Role Labeling (SRL) aims to identify the constituents of a sentence, together with their roles with respect to the sentence predicates. In this paper, we introduce and assess the idea of using SRL on generic Multi-Document Summarization (MDS). We score sentences according to their inclusion of frequent semantic phrases and form the summary using the top-scored sentences. We compare this method with a term-based sentence scoring approach to investigate the effects of using semantic units instead of single words for sentence scoring. We also integrate our scoring metric as an auxiliary feature to a cutting edge summarizer with the intention of examining its effects on the performance. The experiments using datasets from the Document Understanding Conference (DUC) 2004 show that the SRL-based summarization outperforms the term-based approach as well as most of the DUC participants. © 2009 IEEE.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)