Nearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystals

buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage31987en_US
dc.citation.issueNumber25en_US
dc.citation.spage31970en_US
dc.citation.volumeNumber25en_US
dc.contributor.authorHajian, H.en_US
dc.contributor.authorGhobadi, A.en_US
dc.contributor.authorButun, B.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.date.accessioned2018-04-12T11:00:37Z
dc.date.available2018-04-12T11:00:37Z
dc.date.issued2017en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractIn this paper, we numerically demonstrate mid-IR nearly perfect resonant absorption and coherent thermal emission for both polarizations and wide angular region using multilayer designs of unpatterned films of hexagonal boron nitride (hBN). In these optimized structures, the films of hBN are transferred onto a Ge spacer layer on top of a one-dimensional photonic crystal (1D PC) composed of alternating layers of KBr and Ge. According to the perfect agreements between our analytical and numerical results, we discover that the mentioned optical characteristic of the hBN-based 1D PCs is due to a strong coupling between localized photonic modes supported by the PC and the phononic modes of hBN films. These coupled modes are referred as Tamm phonons. Moreover, our findings prove that the resonant absorptions can be red- or blue-shifted by changing the thickness of hBN and the spacer layer. The obtained results in this paper are beneficial for designing coherent thermal sources, light absorbers, and sensors operating within 6.2 μm to 7.3 μm in a wide angular range and both polarizations. The planar and lithography free nature of this multilayer design is a prominent factor that makes it a large scale compatible design. © 2017 Optical Society of America.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:00:37Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1364/OE.25.031970en_US
dc.identifier.issn1094-4087
dc.identifier.urihttp://hdl.handle.net/11693/37027
dc.language.isoEnglishen_US
dc.publisherOptical Society of Americaen_US
dc.relation.isversionofhttps://doi.org/10.1364/OE.25.031970en_US
dc.source.titleOptics Expressen_US
dc.subjectAbsorptionen_US
dc.subjectPhotonic crystalsen_US
dc.subjectSurface wavesen_US
dc.subjectSurface plasmon polaritonsen_US
dc.subjectSurface plasmonsen_US
dc.subjectThermal emissionen_US
dc.subjectMicrocomputersen_US
dc.subjectMultilayer filmsen_US
dc.subjectMultilayersen_US
dc.subjectPolarizationen_US
dc.subjectAlternating layersen_US
dc.subjectCoherent thermal emissionen_US
dc.subjectHexagonal boron nitride (h-BN)en_US
dc.subjectMultilayer designsen_US
dc.subjectOne-dimensional photonic crystal (1D PC)en_US
dc.subjectOptical characteristicsen_US
dc.subjectOptimized structuresen_US
dc.subjectResonant absorptionen_US
dc.subjectPotassium compoundsen_US
dc.titleNearly perfect resonant absorption and coherent thermal emission by hBN-based photonic crystalsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nearly perfect resonant absorption and.pdf
Size:
7.79 MB
Format:
Adobe Portable Document Format
Description:
Full printable version