Comparative analysis of zinc-blende and wurtzite GaN for full-band polar optical phonon scattering and negative differential conductivity

Date
2000
Authors
Bulutay, C.
Ridley, B. K.
Zakhleniuk, N. A.
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Applied Physics Letters
Print ISSN
0003-6951
Electronic ISSN
1077-3118
Publisher
American Institute of Physics
Volume
77
Issue
17
Pages
2707 - 2709
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

For high-power electronics applications, GaN is a promising semiconductor. Under high electric fields, electrons can reach very high energies where polar optical phonon (POP) emission is the dominant scattering mechanism. So, we undertake a full-hand analysis of POP scattering of conduction-hand electrons based on an empirical pseudopotential band structure. To uncover the directional variations, we compute POP emission rates along high-symmetry directions for the zinc-blende (ZB) crystal phase of GaN. We also compare the results with those of the wurtzite phase. In general, the POP scattering rates in the zinc-blende phase are lower than the wurtzite phase. Our analysis also reveals appreciable directional dependence, with the Γ-L direction of ZB GaN being least vulnerable to POP scattering, characterized by a scattering time of 11 fs. For both crystal phases, we consider the negative differential conductivity possibilities driven by the negative effective mass part of the band structure. According to our estimation, for the ZB phase the onset of this effect requires fields above ∼ 1 MV/cm. © 2000 American Institute of Physics.

Course
Other identifiers
Book Title
Keywords
Citation
Published Version (Please cite this version)