Scalable fabrication of MXene-PVDF nanocomposite triboelectric fibers via thermal drawing

buir.contributor.authorHasan, Md Mehdi
buir.contributor.authorSadeque, Md Sazid Bin
buir.contributor.authorAlbasar, Ilgın
buir.contributor.authorOnses, M. Serdar
buir.contributor.orcidOnses, M. Serdar|0000-0001-6898-7700
buir.contributor.orcidOrdu, Mustafa|0000-0003-4049-9283
dc.citation.epage2206107-13en_US
dc.citation.issueNumber6en_US
dc.citation.spage2206107-1en_US
dc.citation.volumeNumber19en_US
dc.contributor.authorHasan, Md Mehdi
dc.contributor.authorSadeque, Md Sazid Bin
dc.contributor.authorAlbasar, Ilgın
dc.contributor.authorPecenek, H.
dc.contributor.authorDokan, F. K.
dc.contributor.authorOnses, M. Serdar
dc.contributor.authorOrdu, Mustafa
dc.date.accessioned2023-02-14T13:41:48Z
dc.date.available2023-02-14T13:41:48Z
dc.date.issued2022-12
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractIn the data-driven world, textile is a valuable resource for improving the quality of life through continuous monitoring of daily activities and physiological signals of humans. Triboelectric nanogenerators (TENG) are an attractive option for self-powered sensor development by coupling energy harvesting and sensing ability. In this study, to the best of the knowledge, scalable fabrication of Ti3C2Tx MXene-embedded polyvinylidene fluoride (PVDF) nanocomposite fiber using a thermal drawing process is presented for the first time. The output open circuit voltage and short circuit current show 53% and 58% improvement, respectively, compared to pristine PVDF fiber. The synergistic interaction between the surface termination groups of MXene and polar PVDF polymer enhances the performance of the fiber. The flexibility of the fiber enables the weaving of fabric TENG devices for large-area applications. The fabric TENG (3 × 2 cm2) demonstrates a power density of 40.8 mW m−2 at the matching load of 8 MΩ by maintaining a stable performance over 12 000 cycles. Moreover, the fabric TENG has shown the capability of energy harvesting by operating a digital clock and a calculator. A distributed self-powered sensor for human activities and walking pattern monitoring are demonstrated with the fabric. © 2022 Wiley-VCH GmbH.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2023-02-14T13:41:48Z No. of bitstreams: 1 Scalable_fabrication_of_MXene-PVDF_nanocomposite_triboelectric_fibers_via_thermal_drawing.pdf: 5741955 bytes, checksum: 040fd2ad4f8912398def28d7293f539e (MD5)en
dc.description.provenanceMade available in DSpace on 2023-02-14T13:41:48Z (GMT). No. of bitstreams: 1 Scalable_fabrication_of_MXene-PVDF_nanocomposite_triboelectric_fibers_via_thermal_drawing.pdf: 5741955 bytes, checksum: 040fd2ad4f8912398def28d7293f539e (MD5) Previous issue date: 2022-10en
dc.identifier.doi10.1002/smll.202206107en_US
dc.identifier.eissn1613-6829
dc.identifier.issn1613-6810
dc.identifier.urihttp://hdl.handle.net/11693/111280
dc.language.isoEnglishen_US
dc.relation.isversionofhttps://doi.org/10.1002/smll.202206107en_US
dc.subjectEnergy harvestingen_US
dc.subjectMXene-polyvinylidene fluoride nanocompositesen_US
dc.subjectScalable fibersen_US
dc.subjectSelf-powered sensorsen_US
dc.subjectThermal drawingen_US
dc.subjectTriboelectric nanogeneratorsen_US
dc.titleScalable fabrication of MXene-PVDF nanocomposite triboelectric fibers via thermal drawingen_US
dc.typeArticleen_US
dcterms.publisherWiley

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Scalable_fabrication_of_MXene-PVDF_nanocomposite_triboelectric_fibers_via_thermal_drawing.pdf
Size:
5.48 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: