Molecular analysis of enginereed nanomaterials in biomedical and regenerative medicine applications

Available
The embargo period has ended, and this item is now available.

Date

2019-04

Editor(s)

Advisor

Elbüken, Çağlar

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Molecular mechanisms are inspiration source for effective nanomaterial synthesis through minimalist bottom-up approaches. Mimicking functional biophysicochemical properties of biomacromolecules can give new insights for design and synthesis of nanomaterials used in biomedical and regenerative medicine applications. In this thesis, rationally-designed nanomaterials and their biomedical applications as oral ketone delivery and biomineralization and long-term potential toxicities were investigated. In the first chapter, basic concepts of nanomaterial design, synthesis, characterization, and nano-bio interface were explained. In the second chapter, a novel long-term nanoparticle accumulation model was developed to understand active regulation of nanoparticle uptake, nanoparticle accumulation behavior and the impact of long-term exposure on cellular machineries (e.g. ER stress). In the third chapter, the role of ketone body betahydroxybutryrate (βOHB) generated by a metabolic enzyme, hydroxymethylglutaryl CoA synthase 2 (HMGCS2), on intestinal stem cell maintenance and regeneration after radiation injury was investigated. Consequences of βOHB depletion in intestine were rectified by oral delivery of PLGA-encapsulated and oligomer forms of βOHB. The last chapter, acidic epitopes of enamel proteins (e.g. amelogenin) were integrated into self-assembling peptides to remineralize eroded enamel. Overall these studies show potential of natureinspired engineered nanomaterials in vast range of biomedical and regenerative medicine applications.

Course

Other identifiers

Book Title

Degree Discipline

Materials Science and Nanotechnology

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)