High-efficiency optical gain in type-II semiconductor nanocrystals of alloyed colloidal quantum wells

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage5324en_US
dc.citation.issueNumber21en_US
dc.citation.spage5317en_US
dc.citation.volumeNumber8en_US
dc.contributor.authorGuzelturk, B.en_US
dc.contributor.authorKelestemur Y.en_US
dc.contributor.authorOlutas M.en_US
dc.contributor.authorLi, Q.en_US
dc.contributor.authorLian, T.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.date.accessioned2018-04-12T11:08:54Z
dc.date.available2018-04-12T11:08:54Z
dc.date.issued2017en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractColloidal nanocrystals having controlled size, tailored shape, and tuned composition have been explored for optical gain and lasing. Among these, nanocrystals having Type-II electronic structure have been introduced toward low-threshold gain. However, to date, their performance has remained severely limited due to diminishing oscillator strength and modest absorption cross-section. Overcoming these problems, here we realize highly efficient optical gain in Type-II nanocrystals by using alloyed colloidal quantum wells. With composition-tuned core/alloyed-crown CdSe/CdSexTe1-x quantum wells, we achieved amplified spontaneous emission thresholds as low as 26 μJ/cm2, long optical gain lifetimes (τgain ≈ 400 ps), and high modal gain coefficients (gmodal ≈ 930 cm-1). We uncover that the optical gain in these Type-II quantum wells arises from the excitations localized to the alloyed-crown region that are electronically coupled to the charge-transfer state. These alloyed heteronanostructures exhibiting remarkable optical gain performance are expected to be highly appealing for future display and lighting technologies.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:08:54Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1021/acs.jpclett.7b02367en_US
dc.identifier.issn1948-7185
dc.identifier.urihttp://hdl.handle.net/11693/37292
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acs.jpclett.7b02367en_US
dc.source.titleJournal of Physical Chemistry Lettersen_US
dc.subjectCadmium compoundsen_US
dc.subjectCharge transferen_US
dc.subjectElectronic structureen_US
dc.subjectNanocrystalsen_US
dc.subjectOptical gainen_US
dc.subjectQuantum theoryen_US
dc.subjectAbsorption cross sectionsen_US
dc.subjectAmplified spontaneous emissionsen_US
dc.subjectCharge transfer stateen_US
dc.subjectColloidal nanocrystalsen_US
dc.subjectColloidal quantum wellsen_US
dc.subjectHetero-nanostructuresen_US
dc.subjectSemiconductor nanocrystalsen_US
dc.subjectType-II quantum wellsen_US
dc.subjectSemiconductor quantum wellsen_US
dc.titleHigh-efficiency optical gain in type-II semiconductor nanocrystals of alloyed colloidal quantum wellsen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals.pdf
Size:
2.68 MB
Format:
Adobe Portable Document Format
Description:
Full printable version