Convergence analysis of a norm minimization-based convex vector optimization algorithm

buir.contributor.authorArarat, Çağın
buir.contributor.authorUlus, Firdevs
buir.contributor.orcidArarat, Çağın|0000-0002-6985-7665
buir.contributor.orcidUlus, Firdevs|0000-0002-0532-9927
dc.citation.epage2728
dc.citation.issueNumber3
dc.citation.spage2700
dc.citation.volumeNumber34
dc.contributor.authorArarat, Çağın
dc.contributor.authorUlus, Firdevs
dc.contributor.authorUmer, Muhammad
dc.date.accessioned2025-02-24T10:59:08Z
dc.date.available2025-02-24T10:59:08Z
dc.date.issued2024-07-25
dc.departmentDepartment of Industrial Engineering
dc.description.abstractIn this work, we propose an outer approximation algorithm for solving bounded convex vector optimization problems (CVOPs). The scalarization model solved iteratively within the algorithm is a modification of the norm-minimizing scalarization proposed in [\c C. Ararat, F. Ulus, and we prove that the algorithm terminates after finitely many iterations, and it returns a polyhedral outer approximation to the upper image of the CVOP such that the Hausdorff distance between the two is less than \epsilon . We show that for an arbitrary norm used in the scalarization models, the approximation error after k iterations decreases by the order of O(k1/(1-q)), where q is the dimension of the objective space. An improved convergence rate of O(k2/(1-q)) is proved for the special case of using the Euclidean norm.
dc.identifier.doi10.1137/23M1574580
dc.identifier.eissn1095-7189
dc.identifier.issn1052-6234
dc.identifier.urihttps://hdl.handle.net/11693/116744
dc.language.isoEnglish
dc.publisherSociety for Industrial and Applied Mathematics
dc.relation.isversionofhttps://dx.doi.org/10.1137/23M1574580
dc.rightsCC BY 4.0 (Attribution 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.titleSIAM Journal on Optimization
dc.subjectConvex vector optimization
dc.subjectMultiobjective optimization
dc.subjectApproximation algorithm
dc.subjectConvergence rate
dc.subjectConvex compact set
dc.subjectHausdorff distance
dc.titleConvergence analysis of a norm minimization-based convex vector optimization algorithm
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Convergence_analysis_of_a_norm_minimization-based_convex_vector_optimization_algorithm.pdf
Size:
707.26 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: