Convergence analysis of a norm minimization-based convex vector optimization algorithm

Series

Abstract

In this work, we propose an outer approximation algorithm for solving bounded convex vector optimization problems (CVOPs). The scalarization model solved iteratively within the algorithm is a modification of the norm-minimizing scalarization proposed in [\c C. Ararat, F. Ulus, and we prove that the algorithm terminates after finitely many iterations, and it returns a polyhedral outer approximation to the upper image of the CVOP such that the Hausdorff distance between the two is less than \epsilon . We show that for an arbitrary norm used in the scalarization models, the approximation error after k iterations decreases by the order of O(k1/(1-q)), where q is the dimension of the objective space. An improved convergence rate of O(k2/(1-q)) is proved for the special case of using the Euclidean norm.

Source Title

SIAM Journal on Optimization

Publisher

Society for Industrial and Applied Mathematics

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English