Investigating the influence of built-up edge on forces and surface roughness in micro scale orthogonal machining of titanium alloy Ti6Al4V

dc.citation.epage40en_US
dc.citation.spage28en_US
dc.citation.volumeNumber235en_US
dc.contributor.authorOliaei, S. N. B.en_US
dc.contributor.authorKarpat, Y.en_US
dc.date.accessioned2018-04-12T10:54:36Z
dc.date.available2018-04-12T10:54:36Z
dc.date.issued2016en_US
dc.departmentDepartment of Mechanical Engineeringen_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractThe edge geometry of cutting tools directly influences the chip formation mechanism in micro-mechanical machining, where the edge radius and uncut chip thickness are in the same order of magnitude. An uncut chip thickness that is smaller than the cutting edge radius results in a large negative rake angle during machining, and built-up edge formation then affects the mechanics of the process. In this study, micro-scale orthogonal cutting tests on titanium alloy Ti6Al4V were conducted to investigate the influence of built-up edge formation on the machining forces and surface roughness. Cutting edges in these tests are engineered using wire EDM technique to have an edge radius of around 2 μm and clearance angles of 7° and 14°. It is observed that machining process inputs (uncut chip thickness, cutting speed, and clearance angle) affect the size of the built-up edge, which in turn affect the process outputs. It is observed that built-up edge formation protects the cutting edge from flank and crater wear under micro machining conditions and the influence of built-up edge on the surface roughness varies depending on the cutting speed and uncut chip thickness. Our findings also indicate a close relationship between the minimum uncut chip thickness and the mean roughness depth (Rz) of the machined surface. The minimum uncut chip thickness is found to be around 10% of the edge radius in the presence of built-up edge.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T10:54:36Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016en
dc.identifier.doi10.1016/j.jmatprotec.2016.04.010en_US
dc.identifier.issn0924-0136
dc.identifier.urihttp://hdl.handle.net/11693/36821
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jmatprotec.2016.04.010en_US
dc.source.titleJournal of Materials Processing Technologyen_US
dc.subjectBuilt-up edgeen_US
dc.subjectCuttingen_US
dc.subjectMicro machiningen_US
dc.subjectTitanium alloyen_US
dc.subjectCuttingen_US
dc.subjectMicromachiningen_US
dc.subjectSurface roughnessen_US
dc.subjectTitaniumen_US
dc.subjectTitanium alloysen_US
dc.subjectBuilt up edgeen_US
dc.subjectChip formation mechanismen_US
dc.subjectCutting edge radiusen_US
dc.subjectMinimum uncut chip thicknessen_US
dc.subjectOrthogonal cuttingen_US
dc.subjectOrthogonal machiningen_US
dc.subjectTitanium alloy Ti6Al4Ven_US
dc.subjectUncut chip thicknessen_US
dc.subjectCutting toolsen_US
dc.titleInvestigating the influence of built-up edge on forces and surface roughness in micro scale orthogonal machining of titanium alloy Ti6Al4Ven_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Investigating_the_influence_of_built-up_edge_on_forces_and_surface_roughness_in_micro_scale_orthogonal_machining_of_titanium_alloy_Ti6Al4V.pdf
Size:
6.16 MB
Format:
Adobe Portable Document Format
Description:
Full printable version