Optimal control in infinite horizon problems: a Sobolev space approach
dc.citation.epage | 509 | en_US |
dc.citation.issueNumber | 3 | en_US |
dc.citation.spage | 497 | en_US |
dc.citation.volumeNumber | 32 | en_US |
dc.contributor.author | Le Van, C. | en_US |
dc.contributor.author | Boucekkine, R. | en_US |
dc.contributor.author | Saglam, C. | en_US |
dc.date.accessioned | 2016-02-08T10:13:06Z | |
dc.date.available | 2016-02-08T10:13:06Z | |
dc.date.issued | 2007 | en_US |
dc.department | Department of Economics | en_US |
dc.description.abstract | In this paper, we make use of the Sobolev space W{1,1}ℝ+, ℝn to derive at once the Pontryagin conditions for the standard optimal growth model in continuous time, including a necessary and sufficient transversality condition. An application to the Ramsey model is given. We use an order ideal argument to solve the problem inherent to the fact that L 1 spaces have natural positive cones with no interior points. © Springer-Verlag 2007. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:13:06Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2007 | en |
dc.identifier.doi | 10.1007/s00199-006-0118-2 | en_US |
dc.identifier.eissn | 1432-0479 | |
dc.identifier.issn | 0938-2259 | |
dc.identifier.uri | http://hdl.handle.net/11693/23383 | |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s00199-006-0118-2 | en_US |
dc.source.title | Economic Theory | en_US |
dc.subject | Optimal control | en_US |
dc.subject | Order ideal | en_US |
dc.subject | Sobolev spaces | en_US |
dc.subject | Transversality conditions | en_US |
dc.title | Optimal control in infinite horizon problems: a Sobolev space approach | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Optimal control in infinite horizon problems A Sobolev space approach.pdf
- Size:
- 145.99 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version