Cubic-phase zirconia nano-island growth using atomic layer deposition and application in low-power charge-trapping nonvolatile-memory devices

buir.contributor.authorOkyay, Ali Kemal
dc.citation.issueNumber44en_US
dc.citation.volumeNumber28en_US
dc.contributor.authorEl-Atab, N.en_US
dc.contributor.authorUlusoy, T. G.en_US
dc.contributor.authorGhobadi, A.en_US
dc.contributor.authorSuh, J.en_US
dc.contributor.authorIslam, R.en_US
dc.contributor.authorOkyay, Ali Kemalen_US
dc.contributor.authorSaraswat, K.en_US
dc.contributor.authorNayfeh, A.en_US
dc.date.accessioned2018-04-12T11:04:54Z
dc.date.available2018-04-12T11:04:54Z
dc.date.issued2017en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractThe manipulation of matter at the nanoscale enables the generation of properties in a material that would otherwise be challenging or impossible to realize in the bulk state. Here, we demonstrate growth of zirconia nano-islands using atomic layer deposition on different substrate terminations. Transmission electron microscopy and Raman measurements indicate that the nano-islands consist of nano-crystallites of the cubic-crystalline phase, which results in a higher dielectric constant (κ ∼ 35) than the amorphous phase case (κ ∼ 20). X-ray photoelectron spectroscopy measurements show that a deep quantum well is formed in the Al2O3/ZrO2/Al2O3 system, which is substantially different to that in the bulk state of zirconia and is more favorable for memory application. Finally, a memory device with a ZrO2 nano-island charge-trapping layer is fabricated, and a wide memory window of 4.5 V is obtained at a low programming voltage of 5 V due to the large dielectric constant of the islands in addition to excellent endurance and retention characteristics.en_US
dc.identifier.doi10.1088/1361-6528/aa87e5en_US
dc.identifier.eissn1361-6528en_US
dc.identifier.issn0957-4484
dc.identifier.urihttp://hdl.handle.net/11693/37171
dc.language.isoEnglishen_US
dc.publisherInstitute of Physics Publishing Ltd.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/1361-6528/aa87e5en_US
dc.source.titleNanotechnologyen_US
dc.subjectAtomic layer depositionen_US
dc.subjectMemory devicesen_US
dc.subjectZirconiaen_US
dc.subjectAtomic layer depositionen_US
dc.subjectAtomsen_US
dc.subjectCharge trappingen_US
dc.subjectData storage equipmenten_US
dc.subjectDepositionen_US
dc.subjectHigh resolution transmission electron microscopyen_US
dc.subjectNonvolatile storageen_US
dc.subjectQuantum theoryen_US
dc.subjectSemiconductor quantum wellsen_US
dc.subjectTransmission electron microscopyen_US
dc.subjectZirconiaen_US
dc.subjectZirconium compoundsen_US
dc.subjectCharge trapping layersen_US
dc.subjectDifferent substratesen_US
dc.subjectLarge dielectric constanten_US
dc.subjectMemory applicationsen_US
dc.subjectNonvolatile memory devicesen_US
dc.subjectProgramming voltageen_US
dc.subjectRaman measurementsen_US
dc.subjectRetention characteristicsen_US
dc.subjectX ray photoelectron spectroscopyen_US
dc.titleCubic-phase zirconia nano-island growth using atomic layer deposition and application in low-power charge-trapping nonvolatile-memory devicesen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cubic-phase zirconia nano-island growth using.pdf
Size:
4.09 MB
Format:
Adobe Portable Document Format
Description:
Full printable version