Cubic-phase zirconia nano-island growth using atomic layer deposition and application in low-power charge-trapping nonvolatile-memory devices
buir.contributor.author | Okyay, Ali Kemal | |
dc.citation.issueNumber | 44 | en_US |
dc.citation.volumeNumber | 28 | en_US |
dc.contributor.author | El-Atab, N. | en_US |
dc.contributor.author | Ulusoy, T. G. | en_US |
dc.contributor.author | Ghobadi, A. | en_US |
dc.contributor.author | Suh, J. | en_US |
dc.contributor.author | Islam, R. | en_US |
dc.contributor.author | Okyay, Ali Kemal | en_US |
dc.contributor.author | Saraswat, K. | en_US |
dc.contributor.author | Nayfeh, A. | en_US |
dc.date.accessioned | 2018-04-12T11:04:54Z | |
dc.date.available | 2018-04-12T11:04:54Z | |
dc.date.issued | 2017 | en_US |
dc.department | Institute of Materials Science and Nanotechnology (UNAM) | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | The manipulation of matter at the nanoscale enables the generation of properties in a material that would otherwise be challenging or impossible to realize in the bulk state. Here, we demonstrate growth of zirconia nano-islands using atomic layer deposition on different substrate terminations. Transmission electron microscopy and Raman measurements indicate that the nano-islands consist of nano-crystallites of the cubic-crystalline phase, which results in a higher dielectric constant (κ ∼ 35) than the amorphous phase case (κ ∼ 20). X-ray photoelectron spectroscopy measurements show that a deep quantum well is formed in the Al2O3/ZrO2/Al2O3 system, which is substantially different to that in the bulk state of zirconia and is more favorable for memory application. Finally, a memory device with a ZrO2 nano-island charge-trapping layer is fabricated, and a wide memory window of 4.5 V is obtained at a low programming voltage of 5 V due to the large dielectric constant of the islands in addition to excellent endurance and retention characteristics. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T11:04:54Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017 | en |
dc.identifier.doi | 10.1088/1361-6528/aa87e5 | en_US |
dc.identifier.eissn | 1361-6528 | en_US |
dc.identifier.issn | 0957-4484 | |
dc.identifier.uri | http://hdl.handle.net/11693/37171 | |
dc.language.iso | English | en_US |
dc.publisher | Institute of Physics Publishing Ltd. | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1088/1361-6528/aa87e5 | en_US |
dc.source.title | Nanotechnology | en_US |
dc.subject | Atomic layer deposition | en_US |
dc.subject | Memory devices | en_US |
dc.subject | Zirconia | en_US |
dc.subject | Atomic layer deposition | en_US |
dc.subject | Atoms | en_US |
dc.subject | Charge trapping | en_US |
dc.subject | Data storage equipment | en_US |
dc.subject | Deposition | en_US |
dc.subject | High resolution transmission electron microscopy | en_US |
dc.subject | Nonvolatile storage | en_US |
dc.subject | Quantum theory | en_US |
dc.subject | Semiconductor quantum wells | en_US |
dc.subject | Transmission electron microscopy | en_US |
dc.subject | Zirconia | en_US |
dc.subject | Zirconium compounds | en_US |
dc.subject | Charge trapping layers | en_US |
dc.subject | Different substrates | en_US |
dc.subject | Large dielectric constant | en_US |
dc.subject | Memory applications | en_US |
dc.subject | Nonvolatile memory devices | en_US |
dc.subject | Programming voltage | en_US |
dc.subject | Raman measurements | en_US |
dc.subject | Retention characteristics | en_US |
dc.subject | X ray photoelectron spectroscopy | en_US |
dc.title | Cubic-phase zirconia nano-island growth using atomic layer deposition and application in low-power charge-trapping nonvolatile-memory devices | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Cubic-phase zirconia nano-island growth using.pdf
- Size:
- 4.09 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version