Near-unity efficiency energy transfer from colloidal semiconductor quantum wells of CdSe/cdS nanoplatelets to a monolayer of MoS2

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage8554en_US
dc.citation.issueNumber8en_US
dc.citation.spage8547en_US
dc.citation.volumeNumber12en_US
dc.contributor.authorTaghipour, N.en_US
dc.contributor.authorMartinez, P. L. H.en_US
dc.contributor.authorOzden, A.en_US
dc.contributor.authorOlutas M.en_US
dc.contributor.authorDede, D.en_US
dc.contributor.authorGungor K.en_US
dc.contributor.authorErdem, O.en_US
dc.contributor.authorPerkgoz, N. K.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.date.accessioned2019-02-21T16:02:23Z
dc.date.available2019-02-21T16:02:23Z
dc.date.issued2018en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractA hybrid structure of the quasi-2D colloidal semiconductor quantum wells assembled with a single layer of 2D transition metal dichalcogenides offers the possibility of highly strong dipole-to-dipole coupling, which may enable extraordinary levels of efficiency in Förster resonance energy transfer (FRET). Here, we show ultrahigh-efficiency FRET from the ensemble thin films of CdSe/CdS nanoplatelets (NPLs) to a MoS2 monolayer. From time-resolved fluorescence spectroscopy, we observed the suppression of the photoluminescence of the NPLs corresponding to the total rate of energy transfer from ∼0.4 to 268 ns-1. Using an Al2O3 separating layer between CdSe/CdS and MoS2 with thickness tuned from 5 to 1 nm, we found that FRET takes place 7- to 88-fold faster than the Auger recombination in CdSe-based NPLs. Our measurements reveal that the FRET rate scales down with d-2 for the donor of CdSe/CdS NPLs and the acceptor of the MoS2 monolayer, d being the center-to-center distance between this FRET pair. A full electromagnetic model explains the behavior of this d-2 system. This scaling arises from the delocalization of the dipole fields in the ensemble thin film of the NPLs and full distribution of the electric field across the layer of MoS2. This d-2 dependency results in an extraordinarily long Förster radius of ∼33 nm.
dc.description.provenanceMade available in DSpace on 2019-02-21T16:02:23Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 222869 bytes, checksum: 842af2b9bd649e7f548593affdbafbb3 (MD5) Previous issue date: 2018en
dc.description.sponsorshipThe authors gratefully acknowledge the financial support in part from Singapore National Research Foundation under the programs of NRF-NRFI2016-08 and the Science and Engineering Research Council, Agency for Science, Technology and Research (A*STAR) of Singapore, and in part from TUBITAK 114F326 and 115E679. H.V.D. also acknowledges support from TUBA. K.G. and O.E. acknowledge support from TUBITAK BIDEB.
dc.identifier.doi10.1021/acsnano.8b04119
dc.identifier.eissn
dc.identifier.issn1936-0851
dc.identifier.urihttp://hdl.handle.net/11693/49997
dc.language.isoEnglish
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://doi.org/10.1021/acsnano.8b04119
dc.relation.projectNational Research Foundation Singapore, NRF: NRF-NRFI2016-08 - Agency for Science, Technology and Research, A*STAR - 115E679, 114F326
dc.source.titleACS Nanoen_US
dc.subjectSemiconductor nanocrystalsen_US
dc.subjectColloidal nanoplateletsen_US
dc.subjectDistance dependencyen_US
dc.subjectFRETen_US
dc.subjectMolybdenum disulfideen_US
dc.subjectFörster radiusen_US
dc.subjectAuger recombinationen_US
dc.titleNear-unity efficiency energy transfer from colloidal semiconductor quantum wells of CdSe/cdS nanoplatelets to a monolayer of MoS2en_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Near-Unity_Efficiency_Energy_Transfer_from_Colloidal_Semiconductor_Quantum_Wells_of_CdSe_CdS_Nanoplatelets_to_a_Monolayer_of_MoS2.pdf
Size:
5.42 MB
Format:
Adobe Portable Document Format
Description:
Full printable version