MoS2 phototransistor sensitized by colloidal semiconductor quantum wells

buir.contributor.authorTaghipour, Nima
buir.contributor.authorDelikanlı, Savaş
buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.issueNumber24en_US
dc.citation.spage2001198en_US
dc.citation.volumeNumber8en_US
dc.contributor.authorSar, H.
dc.contributor.authorTaghipour, Nima
dc.contributor.authorLisheshar, İ. W.
dc.contributor.authorDelikanlı, Savaş
dc.contributor.authorDemirtaş, M.
dc.contributor.authorDemir, Hilmi Volkan
dc.contributor.authorAy, F.
dc.contributor.authorPerkgöz, N. K.
dc.date.accessioned2021-02-28T19:24:35Z
dc.date.available2021-02-28T19:24:35Z
dc.date.issued2020-12
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractA phototransistor built by the assembly of 2D colloidal semiconductor quantum wells (CQWs) on a single layer of 2D transition metal dichalcogenide (TMD) is displayed. This hybrid device architecture exhibits high efficiency in Förster resonance energy transfer (FRET) enabling superior performance in terms of photoresponsivity and detectivity. Here, a thin film of CdSe/CdS CQWs acts as a sensitizer layer on top of the MoS2 monolayer based field‐effect transistor, where this CQWs–MoS2 structure allows for strong light absorption in CQWs in the operating spectral region and strong dipole‐to‐dipole coupling between MoS2 and CQWs resulting in enhanced photoresponsivity of one order of magnitude (11‐fold) at maximum gate voltage (VBG = 2 V) and two orders of magnitude (≈ 5 × 102) at VBG = −1.5 V, and tenfold enhanced specific detectivity. The illumination power‐dependent characterization of this hybrid device reveals that the thin layer of CQWs dominates the photogating mechanism compared to the photoconductivity effect on detection performance. Such hybrid designs hold great promise for 2D‐material based photodetectors to reach high performance and find use in optoelectronic applications.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2021-02-28T19:24:34Z No. of bitstreams: 1 MoS2_phototransistor_sensitized_by_colloidal_semiconductor_quantum_wells.pdf: 4478975 bytes, checksum: 6618f5cc493f3f954ccd32a498db03e8 (MD5)en
dc.description.provenanceMade available in DSpace on 2021-02-28T19:24:35Z (GMT). No. of bitstreams: 1 MoS2_phototransistor_sensitized_by_colloidal_semiconductor_quantum_wells.pdf: 4478975 bytes, checksum: 6618f5cc493f3f954ccd32a498db03e8 (MD5) Previous issue date: 2020-12en
dc.embargo.release2021-12-17
dc.identifier.doi10.1002/adom.202001198en_US
dc.identifier.issn2195-1071
dc.identifier.urihttp://hdl.handle.net/11693/75648
dc.language.isoEnglishen_US
dc.publisherWiley-VCH Verlagen_US
dc.relation.isversionofhttps://dx.doi.org/10.1002/adom.202001198en_US
dc.source.titleAdvanced Optical Materialsen_US
dc.subject2D materialsen_US
dc.subjectColloidal semiconductor quantum wellsen_US
dc.subjectHybrid phototransistors, MoS2en_US
dc.subjectSensitized phototransistorsen_US
dc.titleMoS2 phototransistor sensitized by colloidal semiconductor quantum wellsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MoS2_phototransistor_sensitized_by_colloidal_semiconductor_quantum_wells.pdf
Size:
4.27 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: