Beam steering in a half-frequency driven airborne CMUT transmitter array
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
An airborne Capacitive Micromachined Ultrasonic Transducer (CMUT) transmit array was designed using electromechanical modelling for unbiased airborne operation. The array elements are designed for maximum swing at 10V p-p unbiased drive, whereas conventional practice is to bias CMUT close to the collapsed voltage to achieve higher swing. The devices were fabricated using a customized single photolithographic process with a combination of wet and dry etching. The wafer level fabrication enabled the usage of 2x2 and 3x3 arrays. Driving CMUTs in an unbiased mode at half frequency drives the ‘static pressure’ depressed silicon membrane at a larger swing without letting it collapse. The 2x2 array displays 3.375 kHz bandwidth when characterized in air. The phase and amplitude differences due to the dispersion of resonance frequencies of the elements are compensated for beamformed and beamsteered airborne operation.