A route to unusually broadband plasmonic absorption spanning from visible to mid-infrared

buir.contributor.authorAalizadeh, Majid
buir.contributor.authorÖzbay, Ekmel
buir.contributor.orcidÖzbay, Ekmel|0000-0003-2953-1828
dc.citation.epage1281en_US
dc.citation.issueNumber5en_US
dc.citation.spage1269en_US
dc.citation.volumeNumber14en_US
dc.contributor.authorAalizadeh, Majiden_US
dc.contributor.authorKhavasi, A.en_US
dc.contributor.authorSerebryannikov, A. E.en_US
dc.contributor.authorVandenbosch, G. A. E.en_US
dc.contributor.authorÖzbay, Ekmelen_US
dc.date.accessioned2020-02-03T11:24:10Z
dc.date.available2020-02-03T11:24:10Z
dc.date.issued2019
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractIn this paper, a route to ultra-broadband absorption is suggested and demonstrated by a feasible design. The high absorption regime (absorption above 90%) for the suggested structure ranges from visible to mid-infrared (MIR), i.e., for the wavelength varying from 478 to 3278 nm that yields an ultra-wide band with the width of 2800 nm. The structure consists of a top-layer-patterned metal-insulator-metal (MIM) configuration, into the insulator layer of which, an ultra-thin 5 nm layer of manganese (Mn) is embedded. The MIM configuration represents a Ti-Al2O3-Ti tri-layer. It is shown that, without the ultra-thin layer of Mn, the absorption bandwidth is reduced to 274 nm. Therefore, adding only a 5 nm layer of Mn leads to a more than tenfold increase in the width of the absorption band. It is explained in detail that the physical mechanism yielding this ultra-broadband result is a combination of plasmonic and non-plasmonic resonance modes, along with the appropriate optical properties of Mn. This structure has the relative bandwidth (RBW) of 149%, while only one step of lithography is required for its fabrication, so it is relatively simple. This makes it rather promising for practical applications.en_US
dc.description.provenanceSubmitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2020-02-03T11:24:10Z No. of bitstreams: 1 A_route_to_unusually_broadband_plasmonic_absorption_Spanning_from_visible_to_mid_infrared.pdf: 6557745 bytes, checksum: 6354a4ceb137b8c53666582402e88b66 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-02-03T11:24:10Z (GMT). No. of bitstreams: 1 A_route_to_unusually_broadband_plasmonic_absorption_Spanning_from_visible_to_mid_infrared.pdf: 6557745 bytes, checksum: 6354a4ceb137b8c53666582402e88b66 (MD5) Previous issue date: 2019en
dc.identifier.doi10.1007/s11468-019-00916-xen_US
dc.identifier.issn1557-1955
dc.identifier.urihttp://hdl.handle.net/11693/52994
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttps://dx.doi.org/10.1007/s11468-019-00916-xen_US
dc.source.titlePlasmonicsen_US
dc.subjectLocalized surface plasmonsen_US
dc.subjectNanodisk arrayen_US
dc.subjectImpedancematchingen_US
dc.subjectGuided-mode resonanceen_US
dc.titleA route to unusually broadband plasmonic absorption spanning from visible to mid-infrareden_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_route_to_unusually_broadband_plasmonic_absorption_Spanning_from_visible_to_mid_infrared.pdf
Size:
6.25 MB
Format:
Adobe Portable Document Format
Description:
View / Download

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: