Structural, mechanical, and electronic properties of defect-patterned graphene nanomeshes from first principles

Date

2011

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Physical Review B

Print ISSN

1098-0121

Electronic ISSN

Publisher

American Physical Society

Volume

84

Issue

3

Pages

035452-1 - 035452-7

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Motivated by the state of the art method for fabricating high-density periodic nanoscale defects in graphene, the structural, mechanical, and electronic properties of defect-patterned graphene nanomeshes including diverse morphologies of adatoms and holes are investigated by means of first-principles calculations within density functional theory. It is found that various patterns of adatom groups yield metallic or semimetallic, even semiconducting, behavior and specific patterns can be in a magnetic state. Even though the patterns of single adatoms dramatically alter the electronic structure of graphene, adatom groups of specific symmetry can maintain the Dirac fermion behavior. Nanoholes forming nanomesh are also investigated. Depending on the interplay between the repeat periodicity and the geometry of the hole, the nanomesh can be in different states ranging from metallic to semiconducting including semimetallic states with the bands crossing linearly at the Fermi level. We showed that forming periodically repeating superstructures in a graphene matrix can develop a promising technique for engineering nanomaterials with desired electronic and magnetic properties.

Course

Other identifiers

Book Title

Citation