Unsupervised anomaly detection via deep metric learning with end-to-end optimization
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
We investigate unsupervised anomaly detection for high-dimensional data and introduce a deep metric learning (DML) based framework. In particular, we learn a distance metric through a deep neural network. Through this metric, we project the data into the metric space that better separates the anomalies from the normal data and reduces the effect of the curse of dimensionality for high-dimensional data. We present a novel data distillation method through self-supervision to remedy the conventional practice of assuming all data as normal. We also employ the hard mining technique from the DML literature. We show these components improve the performance of our model. Through an extensive set of experiments on the 14 real-world datasets, our method demonstrates significant performance gains compared to the state-of-the-art unsupervised anomaly detection methods, e.g., an absolute improvement between 4.44% and 11.74% on the average over the 14 datasets. Furthermore, we share the source code of our method on Github to facilitate further research.