Quantifying input uncertainty in an assemble-to-order system simulation with correlated input variables of mixed types
dc.citation.epage | 2135 | en_US |
dc.citation.spage | 2124 | en_US |
dc.contributor.author | Akçay, Alp | en_US |
dc.contributor.author | Biller, B. | en_US |
dc.coverage.spatial | Savanah, GA, USA | en_US |
dc.date.accessioned | 2016-02-08T12:21:03Z | |
dc.date.available | 2016-02-08T12:21:03Z | |
dc.date.issued | 2014 | en_US |
dc.department | Department of Industrial Engineering | en_US |
dc.description | Date of Conference: 7-10 December 2014 | en_US |
dc.description | Conference Name: 2014 Winter Simulation Conference, WSC 2014 | en_US |
dc.description.abstract | We consider an assemble-to-order production system where the product demands and the time since the last customer arrival are not independent. The simulation of this system requires a multivariate input model that generates random input vectors with correlated discrete and continuous components. In this paper, we capture the dependence between input variables in an undirected graphical model and decouple the statistical estimation of the univariate input distributions and the underlying dependence measure into separate problems. The estimation errors due to finiteness of the real-world data introduce the so-called input uncertainty in the simulation output. We propose a method that accounts for input uncertainty by sampling the univariate empirical distribution functions via bootstrapping and by maintaining a posterior distribution of the precision matrix that corresponds to the dependence structure of the graphical model. The method improves the coverages of the confidence intervals for the expected profit the per period. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T12:21:03Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2015 | en |
dc.identifier.doi | 10.1109/WSC.2014.7020057 | en_US |
dc.identifier.issn | 0891-7736 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/28452 | |
dc.language.iso | English | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/WSC.2014.7020057 | en_US |
dc.source.title | Proceedings of the 2014 Winter Simulation Conference, WSC 2014 | en_US |
dc.subject | Graphic methods | en_US |
dc.subject | Confidence interval | en_US |
dc.subject | Dependence measures | en_US |
dc.subject | Dependence structures | en_US |
dc.subject | Empirical distribution functions | en_US |
dc.subject | Input distributions | en_US |
dc.subject | Posterior distributions | en_US |
dc.subject | Simulation outputs | en_US |
dc.subject | Statistical estimation | en_US |
dc.subject | Distribution functions | en_US |
dc.title | Quantifying input uncertainty in an assemble-to-order system simulation with correlated input variables of mixed types | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Quantifying input uncertainty in an assemble-to-order system simulation with correlated input variables of mixed types.pdf
- Size:
- 313.75 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version