Quantifying input uncertainty in an assemble-to-order system simulation with correlated input variables of mixed types

Date
2014
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Proceedings of the 2014 Winter Simulation Conference, WSC 2014
Print ISSN
0891-7736
Electronic ISSN
Publisher
IEEE
Volume
Issue
Pages
2124 - 2135
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

We consider an assemble-to-order production system where the product demands and the time since the last customer arrival are not independent. The simulation of this system requires a multivariate input model that generates random input vectors with correlated discrete and continuous components. In this paper, we capture the dependence between input variables in an undirected graphical model and decouple the statistical estimation of the univariate input distributions and the underlying dependence measure into separate problems. The estimation errors due to finiteness of the real-world data introduce the so-called input uncertainty in the simulation output. We propose a method that accounts for input uncertainty by sampling the univariate empirical distribution functions via bootstrapping and by maintaining a posterior distribution of the precision matrix that corresponds to the dependence structure of the graphical model. The method improves the coverages of the confidence intervals for the expected profit the per period.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)