Silicon nanoparticle charge trapping memory cell

buir.contributor.authorOkyay, Ali Kemal
dc.citation.epage633en_US
dc.citation.issueNumber7en_US
dc.citation.spage629en_US
dc.citation.volumeNumber8en_US
dc.contributor.authorEl-Atab, N.en_US
dc.contributor.authorOzcan, A.en_US
dc.contributor.authorAlkis, S.en_US
dc.contributor.authorOkyay, Ali Kemalen_US
dc.contributor.authorNayfeh, A.en_US
dc.date.accessioned2016-02-08T11:01:13Z
dc.date.available2016-02-08T11:01:13Z
dc.date.issued2014en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractA charge trapping memory with 2 nm silicon nanoparticles (Si NPs) is demonstrated. A zinc oxide (ZnO) active layer is deposited by atomic layer deposition (ALD), preceded by Al2O3 which acts as the gate, blocking and tunneling oxide. Spin coating technique is used to deposit Si NPs across the sample between Al2O3 steps. The Si nanoparticle memory exhibits a threshold voltage (Vt) shift of 2.9 V at a negative programming voltage of -10 V indicating that holes are emitted from channel to charge trapping layer. The negligible measured Vt shift without the nanoparticles and the good re- tention of charges (>10 years) with Si NPs confirm that the Si NPs act as deep energy states within the bandgap of the Al2O3 layer. In order to determine the mechanism for hole emission, we study the effect of the electric field across the tunnel oxide on the magnitude and trend of the Vt shift. The Vt shift is only achieved at electric fields above 1 MV/cm. This high field indicates that tunneling is the main mechanism. More specifically, phonon-assisted tunneling (PAT) dominates at electric fields between 1.2 MV/cm < E < 2.1 MV/cm, while Fowler-Nordheim tunneling leads at higher fields (E > 2.1 MV/cm). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.en_US
dc.identifier.doi10.1002/pssr.201409157en_US
dc.identifier.issn1862-6254
dc.identifier.urihttp://hdl.handle.net/11693/26534
dc.language.isoEnglishen_US
dc.publisherWiley-VCH Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/pssr.201409157en_US
dc.source.titlePhysica Status Solidi - Rapid Research Lettersen_US
dc.subjectAtomic layer depositionen_US
dc.subjectCharge trapping memoriesen_US
dc.subjectPhonon-assisted tunnelingen_US
dc.subjectAluminumen_US
dc.subjectAtomic layer depositionen_US
dc.subjectCharge trappingen_US
dc.subjectDepositionen_US
dc.subjectElectric fieldsen_US
dc.subjectNanoparticlesen_US
dc.subjectPhononsen_US
dc.subjectZinc oxideen_US
dc.subjectCharge trapping layersen_US
dc.subjectCharge trapping memoryen_US
dc.subjectFowler-Nordheim tunnelingen_US
dc.subjectPhonon assisted tunnelingen_US
dc.subjectProgramming voltageen_US
dc.subjectSi nanoparticlesen_US
dc.subjectSilicon nanoparticlesen_US
dc.subjectZnOen_US
dc.subjectSiliconen_US
dc.titleSilicon nanoparticle charge trapping memory cellen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Silicon nanoparticle charge trapping memory cell.pdf
Size:
428.84 KB
Format:
Adobe Portable Document Format
Description:
Full printable version