Fine-tuning the dispersion and the mobility of BaO domains on NO x storage materials via TiO2 anchoring sites

Date

2010

Authors

Andonova, S. M.
Şentürk, G. S.
Ozensoy, E.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Physical Chemistry C

Print ISSN

1932-7447 (print)

Electronic ISSN

Publisher

American Chemical Society

Volume

114

Issue

40

Pages

17003 - 17016

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

In an attempt to control the surface dispersion and the mobility of BaO domains on NOx storage materials, TiO2/TiOx anchoring sites were introduced on/inside the conventional γ-Al 2O3 support matrix. BaO/TiO2/Al 2O3 ternary oxide materials were synthesized via two different sol-gel preparation techniques, with varying surface compositions and morphologies. The synthesized NOx storage materials were studied via XRD, Raman spectroscopy, BET surface area analysis, TPD, XPS, SEM, EDX-mapping, and in situ FTIR spectroscopy of adsorbed NO2. NOx uptake properties of the BaO/TiO2/Al2O3 materials were found to be strongly influenced by the morphology and the surface structure of the TiO2/TiOx domains. An improved Ba surface dispersion was observed for the BaO/TiO2/Al2O3 materials synthesized via the coprecipitation of alkoxide precursors, which was found to originate mostly from the increased fraction of accessible TiO 2/TiOx sites on the surface. These TiO2/ TiOx sites function as strong anchoring sites for surface BaO domains and can be tailored to enhance surface dispersion of BaO. TPD experiments suggested the presence of at least two different types of NOx species adsorbed on the TiO2/TiOx sites, with distinctively different thermal stabilities. The relative stability of the NOx species adsorbed on the BaO/TiO2/Al2O3 system was found to increase in the following order: NO+/N2O 3 on alumina ≪ nitrates on alumina < surface nitrates on BaO < bridged/bidentate nitrates on large/isolated TiO2 clusters < bulk nitrates on BaO on alumina surface and bridged/bidentate nitrates on TiO2 crystallites homogenously distributed on the surface < bulk nitrates on the BaO sites located on the TiO2 domains. © 2010 American Chemical Society.

Course

Other identifiers

Book Title

Citation