Modelling cavitation in viscoelastic thin lubricating films

buir.contributor.authorAhmed, Humayun
buir.contributor.authorBiancofiore, Luca
buir.contributor.orcidAhmed, Humayun|0000-0002-5560-1802
buir.contributor.orcidBiancofiore, Luca|0000-0001-7159-7965
dc.citation.epage425
dc.citation.spage416
dc.citation.volumeNumber160
dc.contributor.authorAhmed, Humayun
dc.contributor.authorBiancofiore, Luca
dc.contributor.authorRuggiero, A
dc.contributor.authorCiulli, E
dc.coverage.spatialSalerno, Italy
dc.date.accessioned2025-02-21T13:35:26Z
dc.date.available2025-02-21T13:35:26Z
dc.date.issued2024-06-20
dc.departmentDepartment of Mechanical Engineering
dc.descriptionConference Name: 5th International Tribology Symposium of IFToMM (ITS-IFToMM)
dc.descriptionDate of Conference: 20 June 2024
dc.description.abstractLubrication via polymer enhanced oils helps prevent excessive energy and material losses in mechanical components such as bearings and gears. The addition of these polymers presents strong non-Newtonian characteristics in the lubricating film, such as shear thinning and viscoelasticity that must be taken into account at high contact load and surface sliding speeds. In this work, we utilize computational methods to model the pressure distribution, governing the maximum load carrying capacity, in a hydrodynamically lubricated contact in which (i) the lubricant viscoelasticity cannot be neglected and the (ii) lubricant film can present a gaseos (or vaporous)-liquid mixture region due to a drop in the film pressure below the cavitation pressure. For this we employ the viscoelastic Reynolds equation (Ahmed & Biancofiore, Journal of Non-Newtonian Fluid Mechanics, 292, 104524, 2021.), (i) modified appropriately to account for lubricant phase change, and (ii) adapted for the robust Fischer-Burmeister-Newton-Schur (FBNS) algorithm to model the cavitation appearance. We observe in several geometries, mimicking journal bearings and pocketed profiles, an improvement in the tribological performance (higher load and lower friction coefficient) as viscoelastic effects are strengthened.
dc.description.provenanceSubmitted by Serdar Sevin (serdar.sevin@bilkent.edu.tr) on 2025-02-21T13:35:26Z No. of bitstreams: 1 Modelling_Cavitation_in_Viscoelastic_Thin_Lubricating_Films.pdf: 1697951 bytes, checksum: 1c42e48ed18720dd901d689118184e97 (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-21T13:35:26Z (GMT). No. of bitstreams: 1 Modelling_Cavitation_in_Viscoelastic_Thin_Lubricating_Films.pdf: 1697951 bytes, checksum: 1c42e48ed18720dd901d689118184e97 (MD5) Previous issue date: 2024-06-20en
dc.identifier.doi10.1007/978-3-031-62616-6_42
dc.identifier.eissn2211-0992
dc.identifier.issn2211-0984
dc.identifier.urihttps://hdl.handle.net/11693/116584
dc.language.isoEnglish
dc.publisherSpringer Cham
dc.relation.ispartofMechanisms and machine science
dc.relation.ispartofseriesbook series; volume 160
dc.relation.isversionofhttps://dx.doi.org/10.1007/978-3-031-62616-6_42
dc.source.titleMechanisms and Machine Science
dc.subjectViscoelasticity
dc.subjectCavitation
dc.subjectThin films
dc.titleModelling cavitation in viscoelastic thin lubricating films
dc.typeConference Paper

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Modelling_Cavitation_in_Viscoelastic_Thin_Lubricating_Films.pdf
Size:
1.62 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: