Structural, optical, electrical and electrocatalytic activity properties of luminescent organic carbon quantum dots

buir.contributor.authorKaratutlu, Ali
buir.contributor.authorPatil, Bhushan
buir.contributor.authorOrtaç, Bülend
buir.contributor.authorYılmaz, Eda
dc.citation.epage4737en_US
dc.citation.issueNumber17en_US
dc.citation.spage4730en_US
dc.citation.volumeNumber3en_US
dc.contributor.authorKaratutlu, Alien_US
dc.contributor.authorPatil, Bhushanen_US
dc.contributor.authorŞeker, İ.en_US
dc.contributor.authorİstengir, S.en_US
dc.contributor.authorBolat, A.en_US
dc.contributor.authorYıldırım, O.en_US
dc.contributor.authorSevgen, Y. N.en_US
dc.contributor.authorBakış, Y.en_US
dc.contributor.authorOrtaç, Bülenden_US
dc.contributor.authorYılmaz, Edaen_US
dc.contributor.authorSapelkin, A.en_US
dc.date.accessioned2019-02-21T16:02:59Z
dc.date.available2019-02-21T16:02:59Z
dc.date.issued2018en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractCarbon is an essential element in human life and recently becoming technologically prominent due to the emerging field of “Carbononics”. We demonstrate organic carbon quantum dots (qdots) containing nitrile bonded (C≡N bond) d-glucose-like traces in various sizes obtained from wheat flour to be promising for imaging applications and to possess a relaxor ferroelectric property and an enhanced electrocatalytic activity that could reduce the cost of energy devices and simple to scale up for the commercialization. The secondary electron microscopy (SEM) imaging shows that the particle size of carbon qdots can be controlled via the sonication exposure time. Elemental analysis and vibrational spectroscopy results show that carbon qdots are sensitive to N2 gas in the atmosphere and could weaken its “carbogenic” property by making a stable C≡N bond at ambient atmosphere. Rietveld analysis and HR-TEM studies demonstrate that the structure of the C qdots was found to fit best with an acentric primitive orthorhombic lattice. The laser scanning confocal microscopy (LSCM) images show enhancement of the light emission when reducing the size and characteristic excitation wavelength-dependent light emission of C qdots. The photoluminescence and UV-Vis absorption spectroscopy techniques show surface dominant emission and absorption upon the nitrile bonding.
dc.embargo.release2019-05-08en_US
dc.identifier.doi10.1002/slct.201800714
dc.identifier.issn2365-6549
dc.identifier.urihttp://hdl.handle.net/11693/50062
dc.language.isoEnglish
dc.publisherWiley-Blackwell
dc.relation.isversionofhttps://doi.org/10.1002/slct.201800714
dc.source.titleChemistrySelecten_US
dc.subjectCarbonen_US
dc.subjectCatalytic activityen_US
dc.subjectFerroelectricen_US
dc.subjectOrganicen_US
dc.subjectQuantum dotsen_US
dc.titleStructural, optical, electrical and electrocatalytic activity properties of luminescent organic carbon quantum dotsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Structural_Optical_Electrical_and_Electrocatalytic_Activity_Properties_Of_Luminescent_Organic_Carbon_Quantum_Dots.pdf
Size:
2.59 MB
Format:
Adobe Portable Document Format
Description:
Full printable version