Cobordism calculations with Adams and James spectral sequences

buir.advisorÜnlü, Özgün
dc.contributor.authorErdal, Mehmet Akif
dc.date.accessioned2016-01-08T18:12:40Z
dc.date.available2016-01-08T18:12:40Z
dc.date.issued2010
dc.descriptionAnkara : The Department of Mathematics and the Institute of Engineering and Science of Bilkent University, 2010.en_US
dc.descriptionThesis (Master's) -- Bilkent University, 2010.en_US
dc.descriptionIncludes bibliographical references leaves 47-48.en_US
dc.description.abstractLet ξn : Z/p → U(n) be an n-dimensional faithful complex representation of Z/p and in : U(n)→O(2n) be inclusion for n ≥ 1. Then the compositions in ◦ ξn and jn ◦ in ◦ ξn induce fibrations on BZ/p where jn : O(2n) → O(2n + 1) is the usual inclusion. Let (BZ/p, f) be a sequence of fibrations where f2n : BZ/p→BO(2n) is the composition Bin ◦ Bξn and f2n+1 : BZ/p→BO(2n + 1) is the composition Bjn ◦Bin ◦Bξn. By Pontrjagin-Thom theorem the cobordism group Ωm(BZ/p, f) of m-dimensional (BZ/p, f) manifolds is isomorphic to π s m(MZ/p, ∗) where MZ/p denotes the Thom space of the bundle over BZ/p that pullbacks to the normal bundle of manifolds representing elements in Ωm(BZ/p, f). We will use the Adams and James Spectral Sequences to get information about Ωm(BZ/p, f), when p = 3.en_US
dc.description.provenanceMade available in DSpace on 2016-01-08T18:12:40Z (GMT). No. of bitstreams: 1 0004021.pdf: 382164 bytes, checksum: a724d0a965685cfda37c8e618ce80a6b (MD5)en
dc.description.statementofresponsibilityErdal, Mehmet Akifen_US
dc.format.extentvii, 48 leavesen_US
dc.identifier.urihttp://hdl.handle.net/11693/15058
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCobordismen_US
dc.subjectLens spaceen_US
dc.subjectGroup representationen_US
dc.subject(B, f)-structuresen_US
dc.subject.lccQA613.66 .E73 2010en_US
dc.subject.lcshCobordism theory.en_US
dc.subject.lcshSpectral sequences (Mathematics)en_US
dc.subject.lcshAdam spectral sequences.en_US
dc.titleCobordism calculations with Adams and James spectral sequencesen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0004021.pdf
Size:
373.21 KB
Format:
Adobe Portable Document Format