Cobordism calculations with Adams and James spectral sequences

Date

2010

Editor(s)

Advisor

Ünlü, Özgün

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
5
views
37
downloads

Series

Abstract

Let ξn : Z/p → U(n) be an n-dimensional faithful complex representation of Z/p and in : U(n)→O(2n) be inclusion for n ≥ 1. Then the compositions in ◦ ξn and jn ◦ in ◦ ξn induce fibrations on BZ/p where jn : O(2n) → O(2n + 1) is the usual inclusion. Let (BZ/p, f) be a sequence of fibrations where f2n : BZ/p→BO(2n) is the composition Bin ◦ Bξn and f2n+1 : BZ/p→BO(2n + 1) is the composition Bjn ◦Bin ◦Bξn. By Pontrjagin-Thom theorem the cobordism group Ωm(BZ/p, f) of m-dimensional (BZ/p, f) manifolds is isomorphic to π s m(MZ/p, ∗) where MZ/p denotes the Thom space of the bundle over BZ/p that pullbacks to the normal bundle of manifolds representing elements in Ωm(BZ/p, f). We will use the Adams and James Spectral Sequences to get information about Ωm(BZ/p, f), when p = 3.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Mathematics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type

Thesis