Molecular and continuum perspectives on intermediate and flow reversal regimes in electroosmotic transport

Date

2019

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Physical Chemistry C

Print ISSN

1932-7447

Electronic ISSN

Publisher

American Chemical Society

Volume

123

Issue

22

Pages

14024 - 14035

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
0
views
34
downloads

Series

Abstract

Electroosmotic slip flows in the Debye–Hückel regime were previously investigated using molecular dynamics and continuum transport perspectives ( J. Phys. Chem. C 2018, 122, 9699). This continuing work focuses on distinct electrostatic coupling regimes, where the variations in electroosmotic flows are elucidated based on Poisson–Fermi and Stokes equations and molecular dynamics simulations. In particular, aqueous NaCl solution in silicon nanochannels are considered under realistic electrochemical conditions, exhibiting intermediate flow and flow reversal regimes with increased surface charge density. Electroosmotic flow exhibits plug flow behavior in the bulk region for channel heights as small as 5 nm. With increased surface charge density, constant bulk electroosmotic flow velocity first increases and then it begins to gradually decrease until flow reversal is observed. In order to capture the flow physics and discrete motions within electric double layer accurately, the continuum model includes overscreening and crowding effects as well as slip contribution and local variations of enhanced viscosity. After extraction of the continuum parameters based on molecular dynamics simulations, good agreement between simulation results and continuum predictions are obtained for surface charges as large as −0.37 C/m2.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)