Nested metamaterials for wireless strain sensing

buir.contributor.authorDemir, Hilmi Volkan
buir.contributor.orcidDemir, Hilmi Volkan|0000-0003-1793-112X
dc.citation.epage458en_US
dc.citation.issueNumber2en_US
dc.citation.spage450en_US
dc.citation.volumeNumber16en_US
dc.contributor.authorMelik, R.en_US
dc.contributor.authorUnal, E.en_US
dc.contributor.authorPerkgoz, N. K.en_US
dc.contributor.authorSantoni, B.en_US
dc.contributor.authorKamstock, D.en_US
dc.contributor.authorPuttlitz, C.en_US
dc.contributor.authorDemir, Hilmi Volkanen_US
dc.date.accessioned2016-02-08T09:59:32Z
dc.date.available2016-02-08T09:59:32Z
dc.date.issued2009-12-28en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractWe designed, fabricated, and characterized metamaterial-based RF-microelectromechanical system (RF-MEMS) strain sensors that incorporate multiple split ring resonators (SRRs) in a compact nested architecture to measure strain telemetrically. We also showed biocompatibility of these strain sensors in an animal model. With these devices, our bioimplantable wireless metamaterial sensors are intended, to enable clinicians, to quantitatively evaluate the progression of long-bone fracture healing by monitoring the strain on the implantable fracture fixation hardware in real time. In operation, the transmission spectrum of the metamaterial sensor attached to the implantable fixture is changed when an external load is applied to the fixture, and from this change, the strain is recorded remotely. By employing telemetric characterizations, we reduced the operating frequency and enhanced the sensitivity of our novel nested SRR architecture compared to the conventional SRR structure. The nested SRR structure exhibited a higher sensitivity of 1.09 kHz/kgf operating at lower frequency compared to the classical SRR that demonstrated a sensitivity of 0.72 kHz/kgf. Using soft tissue medium, we achieved the best sensitivity level of 4.00 kHz/kgf with our nested SRR sensor. Ultimately, the laboratory characterization and in vivo biocompatibility studies support further development and characterization of a fracture healing system based on implantable nested SRR.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:59:32Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2010en
dc.identifier.doi10.1109/JSTQE.2009.2033391en_US
dc.identifier.issn1077-260X
dc.identifier.urihttp://hdl.handle.net/11693/22394
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/JSTQE.2009.2033391en_US
dc.source.titleIEEE Journal on Selected Topics in Quantum Electronicsen_US
dc.subjectBiocompatibilityen_US
dc.subjectMetamaterialen_US
dc.subjectNested SRRen_US
dc.subjectRemote sensingen_US
dc.subjectResonance frequencyen_US
dc.subjectSensitivityen_US
dc.subjectSplit ring resonator (SRR)en_US
dc.subjectStrainen_US
dc.subjectTelemetricen_US
dc.subjectAnimal modelen_US
dc.subjectBio-implantableen_US
dc.subjectBone fractureen_US
dc.subjectExternal loadsen_US
dc.subjectFracture healingen_US
dc.subjectFurther developmenten_US
dc.subjectIn-vivoen_US
dc.subjectLower frequenciesen_US
dc.subjectMicro electro mechanical systemen_US
dc.subjectOperating frequencyen_US
dc.subjectReal timeen_US
dc.subjectResonance frequenciesen_US
dc.subjectResonance frequencyen_US
dc.subjectRF-MEMSen_US
dc.subjectSensitivityen_US
dc.subjectSoft tissueen_US
dc.subjectSplit ring resonatoren_US
dc.subjectSplitring resonatorsen_US
dc.subjectSRR structureen_US
dc.subjectStrain sensingen_US
dc.subjectStrain sensorsen_US
dc.subjectTransmission spectrumsen_US
dc.subjectBiocompatibilityen_US
dc.subjectCharacterizationen_US
dc.subjectElectronic equipmenten_US
dc.subjectFixtures (tooling)en_US
dc.subjectFractureen_US
dc.subjectFracture fixationen_US
dc.subjectMEMSen_US
dc.subjectMetamaterialsen_US
dc.subjectMicroelectromechanical devicesen_US
dc.subjectNatural frequenciesen_US
dc.subjectOptical resonatorsen_US
dc.subjectPosition measurementen_US
dc.subjectRadio receiversen_US
dc.subjectRemote sensingen_US
dc.subjectRing gagesen_US
dc.titleNested metamaterials for wireless strain sensingen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nested metamaterials for wireless strain sensing.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format
Description:
Full printable version