First principles study of electronic and mechanical properties of molybdenum selenide type nanowires

buir.contributor.authorÇıracı, Salim
buir.contributor.authorDurgun, Engin
buir.contributor.orcidÇıracı, Salim|0000-0001-8023-9860
dc.citation.epage235433-8en_US
dc.citation.issueNumber23en_US
dc.citation.spage235433-1en_US
dc.citation.volumeNumber74en_US
dc.contributor.authorÇakir, D.en_US
dc.contributor.authorDurgun, Enginen_US
dc.contributor.authorGülseren, O.en_US
dc.contributor.authorÇıracı, Salimen_US
dc.date.accessioned2016-02-08T10:16:05Z
dc.date.available2016-02-08T10:16:05Z
dc.date.issued2006en_US
dc.departmentDepartment of Physicsen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractUsing the first-principles plane-wave pseudopotential method within density functional theory, we have systematically investigated structural, electronic, and mechanical properties of M2 Y6 X6, Y6 X6 (X=Se,Te,S; Y=Mo,Cr,W; and M=Li,Na) nanowires and bulk phase of M2 Y6 X6. We found that not only Mo6 X6, but also transition metal and chalcogen atoms lying in the same columns of Mo and Se can form stable nanowires consisting of staggered triangles of Y3 X3. We have shown that all wires have nonmagnetic ground states in their equilibrium geometry. Furthermore, these structures can be either a metal or semiconductor depending on the type of chalcogen element. All Y6 X6 wires with X=Te atom are semiconductors. Mechanical stability, elastic stiffness constants, breaking point, and breaking force of these wires have been calculated in order to investigate the strength of these wires. Ab initio molecular dynamic simulations performed at 500 K suggest that overall structure remains unchanged at high temperature. Adsorption of H, O, and transition metal atoms like Cr and Ti on Mo6 Se6 have been investigated for possible functionalization. All these elements interact with Mo6 Se6 wire forming strong chemisorption bonds, and a permanent magnetic moment is induced upon the adsorption of Cr or Ti atoms. Molybdenum selenide-type nanowires can be alternative for carbon nanotubes, since the crystalline ropes consisting of one type of (M2) Y6 X6 structures can be decomposed into individual nanowires by using solvents, and an individual nanowire by itself is either a metal or semiconductor and can be functionalized.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:16:05Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2006en
dc.identifier.doi10.1103/PhysRevB.74.235433en_US
dc.identifier.issn1098-0121
dc.identifier.urihttp://hdl.handle.net/11693/23589
dc.language.isoEnglishen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.74.235433en_US
dc.source.titlePhysical Review B - Condensed Matter and Materials Physicsen_US
dc.titleFirst principles study of electronic and mechanical properties of molybdenum selenide type nanowiresen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
First principles study of electronic and mechanical properties of molybdenum selenide type nanowires.pdf
Size:
720.56 KB
Format:
Adobe Portable Document Format
Description:
Full Printable Version