Goowe : geometrically optimum and online-weighted ensemble classifier for evolving data streams
buir.advisor | Can, Fazlı | |
dc.contributor.author | Asl-Bonab, Hamed Rezanejad | |
dc.date.accessioned | 2016-08-29T10:35:50Z | |
dc.date.available | 2016-08-29T10:35:50Z | |
dc.date.copyright | 2016-07 | |
dc.date.issued | 2016-07 | |
dc.date.submitted | 2016-08-26 | |
dc.description | Cataloged from PDF version of article. | en_US |
dc.description | Includes bibliographical references (leaves 50-55). | en_US |
dc.description.abstract | Designing adaptive classifiers for an evolving data stream is a challenging task due to its size and dynamically changing nature. Combining individual classifiers in an online setting, the ensemble approach, is one of the well-known solutions. It is possible that a subset of classifiers in the ensemble outperforms others in a timevarying fashion. However, optimum weight assignment for component classifiers is a problem which is not yet fully addressed in online evolving environments. We propose a novel data stream ensemble classifier, called Geometrically Optimum and Online-Weighted Ensemble (GOOWE), which assigns optimum weights to the component classifiers using a sliding window containing the most recent data instances. We map vote scores of individual classifiers and true class labels into a spatial environment. Based on the Euclidean distance between vote scores and ideal-points, and using the linear least squares (LSQ) solution, we present a novel dynamic and online weighting approach. While LSQ is used for batch mode ensemble classifiers, it is the first time that we adapt and use it for online environments by providing a spatial modeling of online ensembles. In order to show the robustness of the proposed algorithm, we use real-world datasets and synthetic data generators using the MOA libraries. We compare our results with 8 state-ofthe- art ensemble classifiers in a comprehensive experimental environment. Our experiments show that GOOWE provides improved reactions to different types of concept drift compared to our baselines. The statistical tests indicate a significant improvement in accuracy, with conservative time and memory requirements. | en_US |
dc.description.provenance | Submitted by Betül Özen (ozen@bilkent.edu.tr) on 2016-08-29T10:35:50Z No. of bitstreams: 1 myThesis-finalPDF-9Aug2016.pdf: 1020400 bytes, checksum: c7c538943fa62fcf52bbcddcfc2871ac (MD5) | en |
dc.description.provenance | Made available in DSpace on 2016-08-29T10:35:50Z (GMT). No. of bitstreams: 1 myThesis-finalPDF-9Aug2016.pdf: 1020400 bytes, checksum: c7c538943fa62fcf52bbcddcfc2871ac (MD5) Previous issue date: 2016-08 | en |
dc.description.statementofresponsibility | by Hamed Rezanejad Asl-Bonab. | en_US |
dc.embargo.release | 2018-08-25 | |
dc.format.extent | xi, 55 leaves : illustrations (some color), charts. | en_US |
dc.identifier.itemid | B153995 | |
dc.identifier.uri | http://hdl.handle.net/11693/32179 | |
dc.language.iso | English | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Ensemble classi er | en_US |
dc.subject | Concept drift | en_US |
dc.subject | Evolving data stream | en_US |
dc.subject | Dynamic weighting | en_US |
dc.subject | Geometry of voting | en_US |
dc.subject | Least squares | en_US |
dc.subject | Spatial modeling for online ensembles | en_US |
dc.title | Goowe : geometrically optimum and online-weighted ensemble classifier for evolving data streams | en_US |
dc.title.alternative | Goowe : değişen veri akışları için geometrik açıdan optimum ağırlıklı çevrim içi çoklu sınıflandırıcı | en_US |
dc.type | Thesis | en_US |
thesis.degree.discipline | Computer Engineering | |
thesis.degree.grantor | Bilkent University | |
thesis.degree.level | Master's | |
thesis.degree.name | MS (Master of Science) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- myThesis-finalPDF-9Aug2016.pdf
- Size:
- 996.48 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: