Goowe : geometrically optimum and online-weighted ensemble classifier for evolving data streams

Limited Access
This item is unavailable until:
2018-08-25
Date
2016-07
Editor(s)
Advisor
Can, Fazlı
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Designing adaptive classifiers for an evolving data stream is a challenging task due to its size and dynamically changing nature. Combining individual classifiers in an online setting, the ensemble approach, is one of the well-known solutions. It is possible that a subset of classifiers in the ensemble outperforms others in a timevarying fashion. However, optimum weight assignment for component classifiers is a problem which is not yet fully addressed in online evolving environments. We propose a novel data stream ensemble classifier, called Geometrically Optimum and Online-Weighted Ensemble (GOOWE), which assigns optimum weights to the component classifiers using a sliding window containing the most recent data instances. We map vote scores of individual classifiers and true class labels into a spatial environment. Based on the Euclidean distance between vote scores and ideal-points, and using the linear least squares (LSQ) solution, we present a novel dynamic and online weighting approach. While LSQ is used for batch mode ensemble classifiers, it is the first time that we adapt and use it for online environments by providing a spatial modeling of online ensembles. In order to show the robustness of the proposed algorithm, we use real-world datasets and synthetic data generators using the MOA libraries. We compare our results with 8 state-ofthe- art ensemble classifiers in a comprehensive experimental environment. Our experiments show that GOOWE provides improved reactions to different types of concept drift compared to our baselines. The statistical tests indicate a significant improvement in accuracy, with conservative time and memory requirements.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)