A two phase successive cancellation decoder architecture for polar codes

Date

2013

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

2013 IEEE International Symposium on Information Theory

Print ISSN

2157-8095

Electronic ISSN

Publisher

IEEE

Volume

Issue

Pages

957 - 961

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

We propose a two-phase successive cancellation (TPSC) decoder architecture for polar codes that exploits the array-code property of polar codes by breaking the decoding of a length-TV polar code into a series of length-√ L decoding cycles. Each decoding cycle consists of two phases: a first phase for decoding along the columns and a second phase for decoding along the rows of the code array. The reduced decoder size makes it more affordable to implement the core decoder logic using distributed memory elements consisting of flip-flops (FFs), as opposed to slower random access memory (RAM), leading to a speed up in clock frequency. To minimize the circuit complexity, a single decoder unit is used in both phases with minor modifications. The re-use of the same decoder module makes it necessary to recall certain internal decoder state variables between decoding cycles. Instead of storing the decoder state variables in RAM, the decoder discards them and calculates them again when needed. Overall, the decoder has O(√ L) circuit complexity excluding RAM, and a latency of approximately 2.57V. A RAM of size O(N) is needed for storing the channel log-likelihood variables and the decoder decision variables. As an example of the proposed method, a length N = 214 bit polar code is implemented in an FPGA and the synthesis results are compared with a previously reported FPGA implementation. The results show that the proposed architecture has lower complexity, lower memory utilization with higher throughput, and a clock frequency that is less sensitive to code length. © 2013 IEEE.

Course

Other identifiers

Book Title

Citation