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Abstract—We propose a two-phase successive cancellation
(TPSC) decoder architecture for polar codes that exploits the
array-code property of polar codes by breaking the decoding
of a length-N polar code into a series of length-v/N decoding
cycles. Each decoding cycle consists of two phases: a first
phase for decoding along the columns and a second phase
for decoding along the rows of the code array. The reduced
decoder size makes it more affordable to implement the core
decoder logic using distributed memory elements consisting of
flip-flops (FFs), as opposed to slower random access memory
(RAM), leading to a speed up in clock frequency. To minimize
the circuit complexity, a single decoder unit is used in both
phases with minor modifications. The re-use of the same decoder
module makes it necessary to recall certain internal decoder state
variables between decoding cycles. Instead of storing the decoder
state variables in RAM, the decoder discards them and calculates
them again when needed. Overall, the decoder has O(v/N) circuit
complexity excluding RAM, and a latency of approximately 2.5N.
A RAM of size O(N) is needed for storing the channel log-
likelihood variables and the decoder decision variables. As an
example of the proposed method, a length N = 2'* bit polar
code is implemented in an FPGA and the synthesis results are
compared with a previously reported FPGA implementation. The
results show that the proposed architecture has lower complexity,
lower memory utilization with higher throughput, and a clock
frequency that is less sensitive to code length.

Index Terms—Error correcting codes, polar codes, successive
cancellation decoding, decoding complexity.

I. INTRODUCTION

Polar codes were introduced in [1] as a class of codes that
achieve the capacity of binary-input memoryless symmetric
channels using low-complexity encoders and decoders. The
decoder used in [1] was a successive cancellation (SC) de-
coder. Some implementation aspects of the SC decoder were
discussed in an early follow-up work [2]. Since then the SC
decoder and many of its variants (including belief propagation
(BP) decoders) have been the subject of intense research,
aimed at improving the performance of the basic SC decoder.
This line of work was motivated by potential practical appli-
cations of polar coding and has emphasized efficient hardware
or software implementations. A notable work of this type is
[3], in which a VLSI implementation architecture was given
for the SC decoder. In related work, [4], a semi-parallel SC
decoder implementation was described, with synthesis results
for an FPGA and a TSMC 65 nm process. In [5], first results
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concerning an FPGA implementation of a BP decoder for
polar codes was reported and the complexity of the resulting
implementation was compared with that of a decoder for the
IEEE 802.16e Convolutional Turbo Code (CTC) code, also
implemented on the same FPGA. That comparison showed a
complexity advantage in favor of polar codes.

In this work, we describe a new architecture for the im-
plementation of SC decoding. The proposed TPSC decoder
architecture exploits the fact that polar codes can be expressed
as product codes. As a result, the decoding of an N-bit polar
code can be divided into two phases where each phase a
shorter polar code is decoded. This approach gives rise to two
advantages. First, a smaller partial sum update logic (PSUL)
is used. The term PSUL, borrowed from [4], refers to the
propagation of decoder decisions to parts of the decoder circuit
where they are needed to enable further calculations. The
PSUL is indicated as the main cause of hardware complexity
and low clock frequency in [4]. The second advantage of using
smaller decoder units is to make it more affordable to use FFs
as storage elements integrated into the decoder fabric, instead
of the more abundant but slower RAM. Further details about
the decoder and its relation to previous work will be given in
the following sections.

The organization of the rest of the paper is as follows.
Section II gives a brief account of polar codes. Details of
the TPSC decoder are given in Section III with references to
earlier related work. Finally, synthesis results for the TPSC
decoder are given in Section IV and compared with an earlier
work.

II. POLAR CODES

A. Notation

The codes considered are over the binary field F, and
so are all vector and matrix operations. Boldface uppercase
(lowercase) letters are used to denote matrices (vectors). For
any matrix A, A®" denotes the nth Kronecker power of A.
For any vector u = (uq,...,uy) and set A C {1,...,N},
the notation u, denotes the sub-vector of u consisting of
coordinates in A4, i.e., ugq = (u; : i € A). The function o(z)
is defined as o(z) = 0 if > 0 and o(z) = 1 otherwise.
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B. Polar Encoding

For any N = 2" with n > 1, a length-N polar code is
defined by the linear mapping

x=uGy, Gy=F®" F= E ﬂ ’ W

where u and x are row vectors of size 1 X NV, representing the
source word and the codeword, respectively. A rate /N polar
code is specified by a K-element set A C {1,..., N} which
serves to split the source vector u into two parts: a part u 4
which carries data and its complement u 4. which is frozen.
The decoder knows the frozen part and tries to estimate the
free part. We assume throughout that the frozen part u4- is
fixed as zero. For capacity-achieving performance on a given
channel, the set A needs to be chosen with care, as described
in [1]; however, for the purposes of the present paper, the set
A can be anything.

C. Successive Cancellation Decoding

We consider a decoder architecture which is based on the
uniform graphical representation of polar codes as described
in [2], [5]. Specifically, we use the representation shown in
Fig. 1, which is one of several such representations given in
[5]. The decoding of polar codes will be described in relation

Fig. 1. Uniform decoding graph for an 8-bit SC decoder.

to this graph. For a polar code of length N = 2", there are
N rows and n + 1 columns in the associated graph. The left-
most column (numbered 0) corresponds to the source level and
the right-most column (numbered n) to the channel level. For
each 0 <i < N —1and 0 < 5 < n, the node in the ith row
and the jth column is associated with two decoder variables:
a likelihood ratio (LLR) A; ; and a hard decision (HD) ; ;.
The right-most LLR variables (A; ,, : 4 € {0,..., N —1}) are
received from the channel and constitute the decoder input.

The remaining LLR values are calculated by the formulas

My = {f(/\Zi.,jJrlv )\2i+1,j+1)1 Z < N/2%
9(A2ijr1s A2it1j11, Uimny2,j), @ > N/2,
where
fla,b) = (1 —o(ab)) min(|al, [b])
gla,b,0) =b+(1—-20)a

(The function f is one of several possible approximations to
the exact LLR calculation. The method described here can be
applied with other approximations or the exact formula.)

The HD variables are calculated successively in accordance
with the following rules.

0, j=0and i€ A

G s = U(/\i,j), j:Oandz’eA;
! ﬁi/Q,jfl D ﬁi/2+N/2,j717 7 # 0 and i even;
U(i—1)/24N/2,j—15 j # 0 and 7 odd.

The specific order of calculations in SC decoding as described
in [1] ensures that the interdependencies among the LLR and
HD variables do not lead to a computational lock-up state.
In fact, a certain degree of freedom exists in the schedule of
calculations as mentioned in [1]. Specifically, the LLR values
{Xi,j 10 <i < N —1} atlevel j can be calculated in batches
of size 27, for any 0 < 7 < n. Such parallelization has been
exploited in [3] and [4] to give a range of implementation
options, offering trade-offs between time and hardware com-
plexity.

III. A TWO-PHASE SUCCESSIVE CANCELLATION
DECODER

In this section, we describe the TPSC decoder architecture
for polar codes. This architecture exploits the fact that polar
codes can be factored into the product of smaller polar codes.
We first make this notion more precise before describing the
details of the proposed decoder.

A. Polar Codes as Array Codes

An N-bit polar code can be constructed as a code that maps
a source array of size N; X Ny to a codeword array of the
same size for any N; and N3 such that N = N1 N,. To see
this, write the source vector u in (1) in the form

Uo U1 UN;—1
UN, UN;+1 U2N, -1
u= .
U(N2—1)N;  U(Ng—1)N;+1 UN;N1—1

Encode this array row by row using the matrix Gy, to obtain
an interim array

Vo U1 UN;—1
le leJrl ’UQlel
VvV = .
U(N2—1)N1  U(Na—1)Ny+1 UNoN;p—1
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Next, encode v column by column using G, to obtain

Zo Ty TNy -1
‘TNl $N1+1 ‘T2N1—1
X = .
T(Ny—1)N; L(Na—1)Ni+1 TNyNy—1

It is not difficult to see that the array x, serialized into a vector,
satisfies (1).

B. The Two Phase Successive Cancellation Decoding Algo-
rithm

The TPSC decoder exploits the above structure by splitting
the decoding into two phases, first along the columns then
along the rows. The TPSC algorithm is most readily applicable
to polar codes for which the code length N = 2™ is a power
of 4. Then, one considers the product-form representation
with Ny = Ny = \/N and defines \/N decoding cycles
(DCs). Each DC consists of a phase-1 (P1) decoding cycle,
which works column-wise on the code array, followed by a
phase-2 (P2) decoding cycle, which works row-wise. Every
DC terminates with the estimation of \/N source bits. Fig. 2
illustrates the four DCs in decoding a code of length N = 16.
The active edges processed by the P1 and P2 decoders in each
DC are indicated by the blue and red colors, respectively.
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Fig. 2. Active edges in decoder graph in various DCs for a 16-bit code.

In general, the decoding graph consists of n + 1 levels for
a code of length N = 2". The P1 decoder works on code
segments between levels n/2 and n, while the P2 decoder
works between levels 0 and n/2. The two decoders interface at

level n/2 and exchange information with each other but they
are otherwise independent. There are two types of memory
used by the decoders: flip-flops (FFs) and random access
memory (RAM). FFs are faster than RAMs but the FF storage
capacity is nowhere as abundant as the RAM capacity in
typical FPGAs. In the proposed TPSC decoder, FFs are used
for calculations internal to P1 and P2 decoders. RAM is used
for storing the channel LLRs and the HDs exchanged at level
n/2 between the P1 and P2 decoders. The details of the P1 and
P2 decoders are described next, starting with the P2 decoder
since any standard polar decoder can be used as a P2 decoder,
while the proposed P1 decoder has some novel features.

1) Phase-2 Decoder: The P2 decoder receives LLR inputs
at level n/2 from the P1 decoder and terminates by generating
VN HDs at level 0. Here, we use a fully parallel decoder
for P1. To be more specific, we use the pipelined tree (PT)
decoder architecture proposed in [3], with some modifications
as shown in Fig. 3 for /N = 8. As in the original PT decoder,
the P1 decoder here has 27 processing elements (PEs) between
levels 5 and (j + 1), where each PE is capable of computing
the functions f and g.
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Fig. 3. P2 decoder architecture for v N = 8.

The modified PT architecture used here substitutes a special
PE (SPE) in place of a regular PE in order to improve latency.
The SPE calculates the HDs,

i€ A%
1€ A,

Us;.0 =

0,
{o()\gm) @ o(A2ig1,1),
and
. o, +5 €A
Yitso = {U(A2i+171 + (1= 2d0)Aei1), i+ 5 €A

in parallel, reducing the latency of the original PT decoder
from 2v/N — 2 to 1.5v/N — 2 CCs. The SPE also avoids
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Fig. 4. P1 decoder architecture for v N = 8.

calculating the LLRs ;o at level O since only their signs
are needed. The short-cut used in SPE is similar to the look-
ahead technique proposed in [7], [8]. Finally, the PSUL, which
concerns propagating the HDs to the right in the decoder
graph, is implemented in a manner similar to [4], except here
the PSUL uses a two-bit input since the SPE produces two
HDs in one CC.

The P2 decoder stores the LLRs and HDs in FFs (as opposed
to RAM) in order to improve the clock speed. At the end of
the decoding cycle, the P2 decoder hands over the HDs to the
P1 decoder through a RAM while it discards the LLRs. RAM
is also used by the P2 decoder to keep track of the identity
of the frozen source bits. As pointed out before, FFs are
faster but relatively scarce compared to RAM; so by breaking
the decoding of a length-/NV polar code into the decoding of
length-v/N polar codes, the decoding architecture proposed
here makes FF storage more affordable.

Finally, we note that the P2 decoder employs (v/ N —2) PEs
and one SPE, for a total hardware complexity of O(v/N).

2) Phase-1 Decoder : For P1 decoder, we aim for an
architecture that has the same order of complexity as the P2
decoder in terms of hardware and latency. We achieve this by
proposing a P1 decoder that is very similar to the P2 decoder.
The proposed P1 decoder is shown in Fig. 4 for v/N = 8.

All PEs in the P1 decoder are identical, unlike the P2
decoder that has an SPE at level 0. The P1 decoder uses RAM
to store the channel LLRs and the HDs received from the
P2 decoder; it uses FFs to store the LLRs and HDs that it
computes internally. The inputs to the PSUL are read from
RAM and all partial sums are calculated in one CC. At the
end of each P1 decoder cycle, the LLRs at level n/2 become
inputs to the P2 decoder that takes over.

In this architecture, P1 and P2 decoders are mostly identical
and the same hardware with minor adjustments can serve for

both tasks. No provision is made for the P1 decoder to save
its LLRs at the end of the decoding cycle, other than passing
those LLRs at level n/2 to the P2 decoder. This necessitates
recalculation of the discarded LLRs when they are needed
again in the future. The alternative to discarding the LLRs
would be to save them in RAM, which might reduce the time
complexity if data can be transferred fast enough between the
FFs and the RAM.

As for the latency of the P1 decoder, note that it takes % +1
CCs for the first LLR to appear at the output (level n/2). The
remaining /N — 1 LLRs at level n/2 are calculated in the
next v/N — 1 CCs. Therefore, the latency of the first phase is
VN + 3.

The P1 decoder employs (v/N — 1) PEs and has a total
hardware complexity of O(v/N).

C. Overall Latency and Complexity

The latency of one DC is the sum of the latencies of Pl
and P2 decoders, which is 2.5\/N + % — 2 CCs. Since there
are vV N DCs, the total latency is 2.5N + \/N(g — 2) which
is approximately 2.5 for large N.

The overall circuit complexity of the TPSC decoder equals
the complexity of the P1/P2 decoder, which is O(v/N), plus
the complexity of the RAM units, which is O(N). The sub-
linear complexity O(\/N ) relates to the most expensive logic
elements, such as FFs and look-up tables (LUTs).

D. Heuristics to Improve Latency

In each decoding cycle the P2 decoder encounters a polar
code of some rate which varies between 0 and 1. When the
P2 decoder encounters a code of rate O or 1, a short-cut in
decoding can be introduced as in [6]. If the code rate is 0, the
HDs in that cycle can be pre-computed. If the code rate is 1,
one can simply turn the LLRs at P2 decoder input to HDs.
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The additional hardware required for taking advantage of these
short-cuts is insignificant compared to the overall complexity.

An empirical study on the number of occurrences of rate 0
and 1 codes at the input of the P2 decoder are given in Table 1.
Each polar code in the table is constructed using the formulas
for a binary erasure channel with erasure probability 0.5. This
table shows that the special cases occur often enough that they
can reduce the latency significantly.

TABLE I
FREQUENCY OF RATE 0 AND 1 CODES IN P2 DECODING
Code Rate 173 12 2/3 3/4
P2 Code Rate 0 1 0 1 0 1 0 1
64 3 1 1 1 1 3 0 4
N 1024 12 |1 7 7 1 12 1 14
16384 536 35 [ 35 6 | 53 0| 55

IV. SYNTHESIS RESULTS AND COMPARISONS

This section reports some FPGA synthesis results for the
TPSC decoder and compares them with those for the semi
parallel successive cancellation (SPSC) decoder of [4], which
is the only reference we could find with a comparable imple-
mentation study. The results are presented in Table II. The
FPGA used for synthesis was an ALTERA STRATIX IV
EP4SGX530KH40C2 device. All decoders in the table use
a (Q = 5 bit precision for representing the LLRs. The table
shows that TPSC fares better than SPSC in several respects:
it uses fewer FPGA resources (LUT, FF, RAM), has a faster
clock speed f, and a better throughput (T/P) for any coding
rate R. Furthermore, the clock frequency of TPSC decreases
with increasing code length at a significantly slower rate than
that of SPSC.

TABLE II
FPGA SYNTHESIS RESULTS FOR TPSC AND SPSC.

Decoder | N_| PE | LUT | FF_| RAM (bits) | f (MHz) | T/P (Mbps)
TPSC o4 8 [ 620 | 338 320 240 S8R
TPSC || 1024 | 32 | 1940 | 748 7136 239 S12R
SPSC_|| 1024 | 16 | 2888 | 1388 11904 196 STR
SPSC_|| 1024 | 64 | 4130 | 1691 15104 73 S5R
TPSC_ || 16384 | 128 | 7815 | 3006 | 114560 230 S8R
SPSC__|| 16384 | 64 | 20897 | 17063 | 184064 3 53R

To explain these results several remarks are in order. First,
it should be noted that the TPSC used in this study uses
the heuristic method mentioned in III-D, which explains why
TPSC has a better throughput than SPSC. Second, the lower
RAM usage of TPSC is explained by the fact that TPSC resorts
to recalculations instead of storing LLRs in RAM. Third, the
faster clock speed of TPSC is explained by the fact that TPSC
uses a PSUL of size O(v/N) while SPSC uses a PSUL of
size O(N). In [4], the PSUL size is identified as an important
factor in determining the clock speed, which explains the better
performance of TPSC in this regard. Fourth, the smaller PSUL
of TPSC also helps bring down its complexity significantly;
this is most evident in the comparison between TPSC and
SPSC at block-length 16384 where TPSC uses twice as
many PEs but has a smaller LUT/FF consumption; the larger
LUT/FF utilization of SPSC can only be attributed to PSUL.

V. FUTURE WORK

The TPSC decoder architecture presented in this study
was based on the representation of a polar code as a two-
dimensional array code. It would be of interest to study the
extension of the ideas presented in this paper to the case where
a polar code of length N = NjNy--- N, is represented as
an m-dimensional array code with a code of length V; along
the 7th dimension.
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