Disordered plasmonic nanocavity enhanced quantum dot emission

Date

2023-08-31

Authors

Kosger, Ali Cahit
Ghobadi, Amir
Omam, Zahra Rahimian
Soydan, Mahmut Can
Ulusoy Ghobadi, Türkan Gamze
Özbay, Ekmel

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
29
views
16
downloads

Citation Stats

Series

Abstract

In this paper, a large-scale compatible plasmonic nanocavity design platform is utilized to achieve a nearly order of magnitude photoluminescence (PL) enhancement. The proposed design is made of multi-sized/multi-spacing gold (Au) nanounits that are uniformly wrapped with a thin aluminum oxide (Al2O3) layer, as a foreign host to form a metal-insulator-semiconductor cavity, as they are coated with semiconductor quantum dots (QDs). Our numerical and experimental data demonstrate that, in an optimal insulator layer thickness, the simultaneous formation of broadband Fabry-Perot resonances and plasmonic hot spots leads to enhanced light absorption within the QD unit. This improvement in absorption response leads to the PL enhancement of QDs. This work demonstrates the potential and effectiveness of a random plasmonic nanocavities host in the realization of lithography-free efficient emitters. © 2023 IOP Publishing Ltd

Source Title

Journal of Physics D: Applied Physics

Publisher

Institute of Physics

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

en_US

Type

Article