Using nanogap in label-free impedance based electrical biosensors to overcome electrical double layer effect

buir.contributor.authorBıyıklı, Necmi
buir.contributor.authorOkyay, Ali Kemal
buir.contributor.authorGüler, Mustafa O.
dc.citation.epage897en_US
dc.citation.issueNumber4en_US
dc.citation.spage889en_US
dc.citation.volumeNumber23en_US
dc.contributor.authorOkyay, Ali Kemalen_US
dc.contributor.authorHanoglu, O.en_US
dc.contributor.authorYuksel, M.en_US
dc.contributor.authorAcar, H.en_US
dc.contributor.authorSülek, S.en_US
dc.contributor.authorTekcan, B.en_US
dc.contributor.authorAgan, S.en_US
dc.contributor.authorBıyıklı, Necmien_US
dc.contributor.authorGüler, Mustafa O.en_US
dc.date.accessioned2018-04-12T10:37:41Z
dc.date.available2018-04-12T10:37:41Z
dc.date.issued2017en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.description.abstractPoint-of-care biosensor applications require low-cost and low-power solutions. They offer being easily accessible at home site. They are usable without any complex sample handling or any kind of special expertise. Impedance spectroscopy has been utilized for point-of-care biosensor applications; however, electrical double layer formed due to ions in the solution of interest has been a challenge, due to shielding of the electric field used for sensing the target molecules. Here in this study, we demonstrate a nanogap based biosensor structure with a relatively low frequency (1–100 kHz) measurement technique, which not only eliminates the undesired shielding effect of electrical double layer but also helps in minimizing the measurement volume and enabling low concentration (µ molar level) detection of target molecules (streptavidin). Repeatability and sensitivity tests proved stable and reliable operation of the sensors. These biosensors might offer attributes such as low-cost label-free detection, fast measurement and monolithic chip integrability.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T10:37:41Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1007/s00542-015-2764-4en_US
dc.identifier.issn0946-7076
dc.identifier.urihttp://hdl.handle.net/11693/36368
dc.language.isoEnglishen_US
dc.publisherSpringer Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00542-015-2764-4en_US
dc.source.titleMicrosystem Technologiesen_US
dc.subjectElectric fieldsen_US
dc.subjectMoleculesen_US
dc.subjectNanostructuresen_US
dc.subjectProteinsen_US
dc.subjectShieldingen_US
dc.subjectBiosensor applicationsen_US
dc.subjectElectrical biosensorsen_US
dc.subjectElectrical double layersen_US
dc.subjectImpedance spectroscopyen_US
dc.subjectLabel-free detectionen_US
dc.subjectLow concentrationsen_US
dc.subjectMeasurement techniquesen_US
dc.subjectReliable operationen_US
dc.subjectBiosensorsen_US
dc.titleUsing nanogap in label-free impedance based electrical biosensors to overcome electrical double layer effecten_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Using nanogap in label-free impedance based electrical biosensors to overcome electrical double layer effect.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format
Description:
Full printable version