Adaptive correction and look-up table based interpolation of quadrature encoder signals
Files
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
This paper presents a new method to increase the available measurement resolution of quadrature encoder signals. The proposed method features an adaptive signal correction phase and an interpolation phase. Typical imperfections in the encoder signals including amplitude difference, mean offsets and quadrature phase shift errors are corrected using recursive least squares with exponential forgetting and resetting. Interpolation of the corrected signals are accomplished by a quick access look-up table formed offline to satisfy a linear mapping from available sinusoidal signals to higher order sinusoids. The position information can be derived from the conversion of the high-order sinusoids to binary pulses. With the presented method, 10nm resolution is achieved with an encoder having 1μm of original resolution. Further increase in resolution can also be satisfied with minimizing electrical noises. Experiment results demonstrating the effectiveness of the proposed method for a single axis and two axis slider systems are given. Copyright © 2012 by ASME.