Theorems on the core of an economy with infinitely many commodities and consumers

Date

2008

Authors

Evren, Ö.
Hüsseinov, F.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Mathematical Economics

Print ISSN

0304-4068

Electronic ISSN

1873-1538

Publisher

Elsevier BV

Volume

44

Issue

11

Pages

1180 - 1196

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
0
views
16
downloads

Series

Abstract

It is known that the classical theorems of Grodal [Grodal, B., 1972. A second remark on the core of an atomless economy. Econometrica 40, 581-583] and Schmeidler [Schmeidler, D., 1972. A remark on the core of an atomless economy. Econometrica 40, 579-580] on the veto power of small coalitions in finite dimensional, atomless economies can be extended (with some minor modifications) to include the case of countably many commodities. This paper presents a further extension of these results to include the case of uncountably many commodities. We also extend Vind's [Vind, K., 1972. A third remark on the core of an atomless economy. Econometrica 40, 585-586] classical theorem on the veto power of big coalitions in finite dimensional, atomless economies to include the case of an arbitrary number of commodities. In another result, we show that in the coalitional economy defined by an atomless individualistic model, core-Walras equivalence holds even if the commodity space is non-separable. The above-mentioned results are also valid for a differential information economy with a finite state space. We also extend Kannai's [Kannai, Y., 1970. Continuity properties of the core of a market. Econometrica 38, 791-815] theorem on the continuity of the core of a finite dimensional, large economy to include the case of an arbitrary number of commodities. All of our results are applications of a lemma, that we prove here, about the set of aggregate alternatives available to a coalition. Throughout the paper, the commodity space is assumed to be an ordered Banach space which has an interior point in its positive cone. © 2008 Elsevier B.V. All rights reserved.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)